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ABSTRACT

The seismic risks to a structure or a set of structures in a region are usually determined by

generating fragility curves that provide the probability of a building responding in a certain

manner for a given level of ground motion intensity. Developing fragility curves, however,

is challenging as it involves the computationally expensive task of obtaining the maximum

response of the selected structures to a suite of ground motions representing the seismic

hazard of the region selected.

This study presents a methodology to develop surrogate models for the prediction of the

maximum responses of buildings to ground motion excitation. Data-driven surrogate mod-

els using simple machine learning techniques and physics-based surrogate models using the

space mapping technique to map the low-fidelity responses obtained using a multi-degree of

freedom shear building model to the high-fidelity values are developed for the prediction of

the maximum roof drift ratio and the maximum story drift ratio of a chosen 15-story steel

moment-resisting frame building with varying structural properties in California. The predic-

tions of each of these surrogate models are analyzed to assess and compare the performance,

capabilities, and limitations of these models. Best practices for developing surrogate models

for the prediction of maximum responses of structures to ground motion are recommended.

The results from the development of data-driven surrogate models show that the spectral

displacement is the best intensity measure to condition the maximum roof drift ratio, and

the spectral velocity is the best intensity measure to condition the maximum story drift

ratio. Fragility analysis of the structure is thus conducted using maximum story drift as the

engineering demand parameter and spectral velocity as the intensity measure. Monte Carlo

simulation is conducted using the physics-based surrogate model to estimate the maximum

story drifts for ground motions that are incrementally scaled to different intensity levels.

Maximum likelihood estimates are used to obtain the parameters for a lognormal distribution

and the 95% confidence intervals are obtained using the Wald confidence interval to plot the

fragility curves.

Fragility curves are plotted both with and without variations in the structural properties

of the building, and it is found that the effects of variability in ground motions on the fragility
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are far higher than the effects of the randomness of structural properties. Finally, it is found

that about 65 ground motion records are needed for convergence of the parameters of the

lognormal distribution for plotting fragility curves by using Monte Carlo simulation.
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1. INTRODUCTION

Seismic hazards pose a risk to buildings in several earthquake-prone regions. A way to

quantify this risk on buildings is to develop fragility curves that provide the probability of

failure (or the probability of a building responding in a certain manner) at a given ground

motion intensity. An important step in the fragility analysis of structures is determining

the maximum structural response (such as the maximum story drift ratio or the maximum

roof drift ratio) for various ground motions. Maximum responses thus obtained are used to

determine the state of the building. By repeating this for enough ground motion records, the

probability that the building responds in a particular manner when excited at a particular

ground motion intensity can be obtained. Different methods have been used to determine the

maximum structural response of structures to ground motion excitations. Details regarding

some of these methods along with more information regarding the fragility analysis procedure

are provided in Chapter  2 .

Outside of fragility analysis, estimates of maximum structural responses are also used in

the design of seismic resistant structures[  1 ], where one of the design objectives is to limit

the maximum response (usually the story drifts) under a certain value for a design-level

earthquake.

One straightforward way to obtain these peak structural responses is by using compu-

tational methods such as finite element modeling. However, obtaining the peak structural

responses of a building under ground motion excitation computationally is a laborious task

as it requires obtaining a complete time-history response first. This involves solving the

equations of motion at every time step at which the ground motion data is recorded. Fur-

thermore, ground motions are highly random and it is difficult to capture this randomness

in just a few parameters. Adding to this complexity, ground motions with sufficiently high

magnitudes drive the structures into nonlinear behavior. This nonlinearity could arise from

various sources including material and geometric nonlinearities. All of this means that sim-

ulating the response of a structure to ground motion takes a long time, often magnitudes

of order higher than the actual duration of the ground motion itself. This becomes a big-
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ger issue in studies where multiple runs are required, such as fragility analysis, parametric

analysis, optimization studies, or even preliminary design.

One possible solution to this challenge is reducing the complexity of the computational

model used to obtain the time-history response. Computational models can be created with

different levels of detail as required by the problem at hand. While complex high-fidelity

models can provide more accurate results, these models require high-computational costs

to execute. This could be problematic while using the models to run multiple times to

explore the entire parameter space. Computational cost can be reduced by reducing the

fidelity of the models at the expense of accuracy, by making approximations, by relaxing the

convergence criteria, or by using a coarser mesh. The results generated using low-fidelity

models, however, may not be accurate enough for certain studies. Determining the right

balance between computational cost and accuracy, therefore, is always a challenging task.

Surrogate modeling is a technique to combine the advantages of both high-fidelity and

low-fidelity modeling techniques to develop a model that gives acceptable results while requir-

ing a low computational cost. In surrogate modeling, a limited number of high-fidelity data

points are used to enhance the results obtained from low-fidelity models. These surrogate

modeling techniques can be broadly classified into three types: data-driven, physics-based,

and knowledge-based surrogate modeling techniques. Each of the three categories contains

multiple different types of surrogate modeling choices based on the requirements of the prob-

lem. The goal of this thesis is to build surrogate models that can be used to estimate the

maximum responses of buildings to ground motions without requiring nonlinear time-history

analysis.

Data-driven surrogate modeling techniques use machine learning and statistical methods

to fit the high-fidelity data obtained at specific points using high-fidelity models[  2 ]. A model,

trained on high-fidelity data in this way is then used to predict the desired outputs for regions

of the input space where high-fidelity data is not generated. These are typically used when

there is a lot of high-fidelity data available or when such data can be easily generated.

Physics-based surrogate modeling techniques use physical knowledge of the real-world

system to obtain a simplified low-fidelity model[  3 ]. These simplifications include reducing

the complexity of the model by making certain assumptions to simplify the physics of the
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problem or increasing the coarseness of the mesh and relaxing the convergence criteria to

reduce the computational effort required. Usually, the results from the low-fidelity model

are enhanced by mapping these low-fidelity results to high-fidelity data at certain points

to reduce the error in prediction. Physics-based surrogate models are typically useful when

certain assumptions can be made regarding the real-world system to build low-fidelity physics

models without losing critical information about the system.

Knowledge-based surrogate modeling techniques use the existing knowledge about a real-

world system to obtain the results[  4 ]. Existing knowledge could include the observations

made regarding the real-world system or empirical equations developed based on these ob-

servations. These kinds of models are typically used when little high-fidelity data is available

and the exact physics of the system is not known, making it difficult to analytically model

the system.

Once surrogate models with acceptable levels of errors have been developed, these can

be used to obtain the peak structural response for many different ground motions with

different levels of intensities, at a low computational cost. Thus, by evaluating the state of

the buildings over many different ground motion excitation, a potentially better estimate

can be obtained for the probability of the buildings exhibiting different types of responses.

If the surrogate model is capable of making sufficiently accurate predictions for various

combinations of structural properties, in addition to different ground motions, the fragility

curves developed using these models can also incorporate uncertainties in the structural

parameters.

In parametric analysis, these surrogate models can likely be used concurrently with com-

plex nonlinear computations to explore the entire parametric space; the nonlinear computa-

tional models can be used for obtaining the responses at regular intervals, and the surrogate

models for the responses at points within these intervals. This approach becomes more con-

sequential when the results of high-fidelity computational models are already obtained at

regular intervals to train the surrogate models.

In conceptual design and optimization studies, the surrogate models can be used to ini-

tially explore the parameter space entirely and narrow down the search to a small subset

of the parameter space where complex nonlinear computational models can then be used to
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capture more intricate details[  5 ]. Furthermore, surrogate models can be potentially used to

explore the effects of uncertainties in structural or material properties, and the assumed de-

sign loads of the building to supplement the data from complex nonlinear models constructed

without incorporating these uncertainties.

While there are so many different types of surrogate modeling techniques available, there

are not many studies that compare the performance, capabilities, and uses of different types.

Most literature focuses on developing a single type of surrogate model and validating the

use of that particular surrogate model for the application at hand. In this study, an effort

is made to compare the data-driven and physics-based surrogate models for the nonlinear

analysis of buildings to seismic ground motions.

A detailed overview of previous works on surrogate modeling and its types, fragility

analysis, and the seismic response of structures by various authors is provided in Chapter  2 .

Chapter  3 provides more details regarding the building selected for this study and the scope

of the study. Chapter  4 that follows provides the details regarding different models that are

used to generate the data that is assumed to be the ground truth in this study. Following this,

Chapters  5 and  6 provide the details of the surrogate modeling techniques used to predict

the fundamental frequency and the peak structural responses (maximum roof drift ratio and

the maximum story drift ratio) in this study. In Chapter  7 , the surrogate models developed

in this study are used to obtain the fragility curves for the building under consideration,

while accounting for variations in structural as well as ground motion uncertainties. Finally,

Chapter  8 draws the conclusions from this study and provides a list of improvements that

can be made in the future.
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2. LITERATURE REVIEW AND BACKGROUND

This chapter summarises the details of some of the previous research on surrogate modeling

in seismic engineering and fragility analysis. The chapter is divided into several sections

based on the topic being discussed.

2.1 Overview

The risks due to ground motion hazards on structures depends on both the seismic hazard

of the region and the type of structure. The uncertainty in ground motion variability makes

it difficult to quantify the seismic risk to structures in certain regions. Fragility curves have

become a norm in the structural engineering community as a way to quantify the risk on a

structure or a population of structures in a particular region due to ground motions. Fragility

curves provide the probability that a structure or a population of structures exhibits certain

levels of damage for a given intensity of ground motion[ 6 ]. An example of a fragility curve

from Kircher et al.[ 6 ] is shown in Figure  2.1 . In this way, if the ground motion hazard

in a region is known (through ground motion hazard maps or using studies by researchers

quantifying the ground motion hazard of particular regions), the corresponding risk on a

structure or a set of structures in that region can be quantified using corresponding fragility

curves. Bakalis and Vamvatsikos[ 7 ] provide a good guide to generating fragility curves.

Figure 2.1. Example of a fragility curve 

2
 

2Source: Kircher et al.[ 6 ]
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Fragility curves have been developed for a wide variety of structures. While most of

the research done in fragility analysis is for bridges[ 8 ] and buildings[ 9 ], they have also been

developed for dams[ 10 ]–[ 12 ], containment structures[  13 ], tunnels [  14 ], [  15 ] and geostructures

[ 16 ], and wind turbines[  17 ]. Fragility analysis has also been conducted for nonstructural

components. Soroushian et al.[ 18 ] for example, studied the fragility of fire sprinkler piping

systems. Fragility curves can be obtained for a single structure[  19 ], a set of similar struc-

tures in a region[ 20 ], or an entire population of structures encompassing different types of

structures[ 21 ], [  22 ].

Kircher et al.[ 6 ] provides a good account of the procedure to conduct fragility analysis.

Usually, the first step in conducting a fragility analysis is selecting the structures and ground

motions for the analysis. Following this, the response of the structures to ground motion

is obtained in one of many ways. These can be analytical (physics-based), data-driven, or

knowledge-based. Finally, the fragility of the structures is calculated and plotted to obtain

the fragility curves. The following sections provide findings from past studies along each of

these steps.

2.2 Uncertainties in Structural Properties

When developing fragility curves, a choice has to be made about whether to incorporate

uncertainties in structural properties in the study or not. When not including any uncer-

tainties, all structural properties can be assumed to be deterministic to obtain the fragility

curves. Mandal et al.[ 13 ] in their study assumed that structural properties are deterministic

and assumed that only the variability in ground motions affects the containment structure

they chose.

However, when considering uncertainties, the structural properties are usually modeled

as random variables with known probability distributions (either from previous experiments

and measurements or by judgment). Modeling the uncertainties in all the structural and

material properties is not possible as it adds needless complexity to the problem. Instead, it

is important to determine a limited number of structural properties, the uncertainties which

affect the fragility of the structure the most. Following this, only these variables can be
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modeled as random variables, while the remaining properties are assumed to be deterministic.

Seo et al.[ 23 ] developed Pareto plots and statistical significance measures to select structural

parameters that affect the response of irregular steel moment frame structures the most.

Glaister and Pinho[  22 ] conducted a brief parametric analysis studying the effects of material

and geometric uncertainties on the fragility curves of buildings. Pan et al.[ 24 ] followed a

similar process using parametric analysis to study the effects of structural uncertainties on

the fragility of bridges.

The most common sources of uncertainties modeled in material properties studied are

the strengths and stiffness of structural materials[ 4 ], [  9 ], [  25 ]. In buildings, the sources of

uncertainties in geometry typically arise in the form of dimensions of beams and columns, and

the variations in configurations due to different numbers of stories[  20 ]. In bridges, geometric

uncertainties usually studied are the gaps in decks and different configurations of bridges[  26 ],

[ 27 ]. However, uncertainties in several other parameters have also been modeled to study

the effects of these uncertainties on the fragility of structures.

Different researchers have previously shown that randomness in structural and material

properties has a lower influence on the response of the structure than the randomness in

ground motion properties. Kwon and Elnashai[  9 ] modeled the strength of concrete and the

yield strength of steel bars of an reinforced concrete building as random variables and found

that the variability in material properties has a much lower effect on structural responses

than variability in ground motions. Furthermore, they found that the mean value of the

maximum story drift of individual analysis of 100 frames was different only at high ground

motion intensities from the maximum story drift of a single structure with mean structural

properties. They also found that the yield strength of steel bars had no significant effect

on the structural response because the yield strength of steel did not affect the period of

the building. They noticed that the effect of yield strength was even less influencial at low

ground motion intensities.

Similarly, Rossetto and Elnashai[  28 ] accounted for uncertainties in material properties

by selecting unconfined compressive strength of concrete, compressive strength of infills, and

yield strength of reinforcing bars of RC buildings as random variables and demonstrated

that uncertainties in ground motions result in a larger variation in responses (maximum
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story drift in their case) than uncertainties in the material properties. Lupoi et al.[ 29 ] found

that the randomness in strength-related parameters do not have a significant influence on

displacement-related quantities such as drifts. Reinhorn et al.[ 30 ] similarly found that vary-

ing the strength does not significantly change the fragility curves. On the other hand, Pang

et al.[  19 ] considered uncertainties in 15 material and geometric parameters in their study

and found that modeling the variations in these parameters resulted in larger probability of

damage as compared to when considering just the variations in ground motions.

Certain studies have developed a way to incorporate uncertainties in structural parame-

ters directly in the method of developing fragility curves, without explicitly modeling them.

Mosalam et al.[  31 ] introduced uncertainties directly in the pushover curve to avoid the oth-

erwise challenging task of considering many different sources of uncertainties in structural

parameters.

2.3 Selection of Ground Motions

After determining the structure or a set of structures, it is important to select ground

motion records that are characteristic of the region under study. These ground motions

could be real ground motions or synthetic ground motions developed for the particular

region. Obtaining different ground motion records from a single region for many intensities

inside the range of expected ground motion intensities is not often feasible. This is more

true when only real ground motions are used. One option is to use ground motion records

from other regions with similar characteristics. The other option is to select just a few

ground motion records and scale these records to different values of intensities to populate

the whole range of ground motion intensities that are required in the study. Haselton et

al.[ 32 ] and Cornell[ 33 ] provided recommendations on selecting and scaling ground motions

without introducing bias.

2.4 Intensity Measures

The fragility of structures is conditioned on a given level of ground motion intensity to

reduce the scatter in response which would otherwise be seen when the fragility of structures
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would be obtained without mapping it to the particular ground motion intensity. Different

types of intensity measures have been used by researchers in the past. However, there are

very few papers that provide a comparison of more than 2 intensity measures for fragility

analysis.

The most commonly used intensity measure is the peak ground acceleration of the ground

motion[ 9 ], [  28 ], [  34 ]. However, several researchers found that peak ground properties such

as the peak ground acceleration and the peak ground velocity are not the best measure

to condition the fragility of a building since these values do not contain any information

regarding the frequency content of the ground motion, and suggested using other measures

such as the spectral response properties that capture the frequency content of ground motions

instead, thus reducing the scatter in fragility.

Mandal et al.[  13 ] noted that spectral acceleration correlated with maximum story drift

ratio better than PGA. Similarly, Rossetto and Elnashai[ 21 ] demonstrated that vulnera-

bility curves conditioned using PGA as the intensity measure showed higher scatter than

vulnerability curves conditioned using spectral response properties. They found that using

spectral displacement provided a better correlation to the empirical maximum story drift

data they had used in their study than spectral acceleration. Despite this, peak ground

acceleration continues to be the most commonly used ground motion intensity measure in

fragility studies.

Certain researchers have found that using multi-dimensional intensity measures to de-

velop fragility surfaces reduces the uncertainty in estimates of fragility curves. Pan et al.

developed fragility surfaces by conditioning the probability of failure against 2 parameters,

the moment magnitude and the distance from the epicenter at the site citing that these

quantities are more readily available than other ground motion intensity measures[ 34 ]. In

another study, Pan et al.[ 24 ] found that using multivariate regression against moment mag-

nitude and epicentral distance provided a better fit for fragility values than using linear

regression against PGA. Lagomarsino and Giovinazzi[ 35 ] used microseismic intensity to de-

velop data-driven fragility curves of buildings using empirical studies.

Seyedi et al.[ 36 ] compared fragility surfaces obtained using spectral displacements at

two different periods as intensity measures against fragility curves obtained using just one

37



of these measures and found that the uncertainty in fragility decreased when using two

measures to condition the fragility instead of just one. Peña et al.[  37 ] compared fragility

estimates developed using single intensity measure (PGV) to data-driven fragility estimates

developed using multi-dimensional intensity measures (PGV and spectral velocity) for a non-

linear benchmark model of a twenty-story building. They noted that although the amount

of uncertainty in fragility functions obtained using multi-dimensional intensity measures was

higher than the uncertainty when using a single intensity measure, the uncertainty decreased

the fastest when using multi-dimensional intensity measures as the number of observations

used to build the fragility functions increased.

Baker and Cornell[ 38 ] demonstrated that using spectral acceleration as the sole intensity

measure overestimated the response of the RC moment-frame building they studied, when

compared to the responses obtained using a vector-valued intensity measure including both

the spectral acceleration and a factor defined as epsilon (which measures the number of

standard deviations by which log of spectral acceleration of a record varies from the log of

the mean predicted spectral acceleration).

Mackie and Stojadinović[ 39 ] provides a list of commonly used intensity measures and

engineering demand parameters. However, to my knowledge, no study is available com-

paring the results obtained using different combinations of intensity measures and response

parameters to determine which combinations work the best.

Kiani and Pezeshk[ 40 ] analyzed how different ground motion intensity measures affect

the structural responses for RC moment resisting frame buildings. They found that spectral

intensity (SI) (or Housner intensity[ 41 ]), which is the area under the pseudo-spectral velocity

curve between periods of 0.1 s and 2.5 s, is the best intensity measure to reduce the errors

in the predictions of the maximum story drift ratio.

2.5 Engineering Demand Parameters

The damage states of a structure are usually determined by comparing the maximum

response of the structure to a set of preset values. These response parameters are called

engineering demand parameters (EDP). Different EDPs have been used by authors. For
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buildings, the most commonly used EDPs are the maximum story[ 21 ], [  28 ], [  37 ] and roof

drift ratios[  20 ] or displacements. For nonstructural damage, the most commonly used EDPs

are maximum drifts or maximum floor accelerations[ 42 ]. Other parameters such as plastic

hinge rotations[ 9 ], [  18 ], and effective stresses[  17 ], [  25 ] have also been used but less often.

For bridges, it is usually the practice to use different EDPs for different components.

The commonly used combinations are curvature ductility for columns, and deformations for

bearings and abutments[ 24 ], [  26 ], [  43 ].

2.6 Damage States

Damage states are defined by setting ranges for EDPs and comparing the observed values

to figure out in which range the response falls. These limits and ranges are developed through

engineering judgment, experience, or experimental observations.

HAZUS[ 6 ] defines four damage states: slight, moderate, extensive, and complete damage,

for different structures based on the visible damages. FEMA-356[  44 ] and FEMA-273[  45 ] de-

fine 4 limit states: Operational, Immediate Occupancy, Life Safety, and Collapse Prevention,

for different types of structures based on different types of engineering parameters such as

maximum story drift and plastic hinge rotations, and also state the corresponding visible

damages for each of those states. Several researchers use recommendations from these arti-

cles to classify damage and develop fragility curves[ 9 ], [ 20 ], [ 27 ] while several other authors

define their limit states[ 21 ], [  31 ].

When observational data from past earthquakes are used for fragility analysis, damage

classification based on investigations can be used to classify responses[  4 ]. Several times,

however, schemes are required to convert qualitative data about damage in reports to quan-

titative measures. Lagomarsino and Giovinazzi[ 35 ] used fuzzy theory to build a damage

probability matrix to accomplish this. Rossetto and Elnashai[  21 ] developed a homogenous

damage scale for RC buildings defining the damage index based on observed damage for

various types of RC buildings.
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2.7 Obtaining Responses

Once the suite of ground motions is obtained and the IMs and EDPs selected, the next

step is to obtain the maximum responses of the structure. Different methods have been used

to obtain the maximum response of structures to ground motions. These methods can be

classified into analytical (physics-based), data-driven, and knowledge-based approaches.

2.7.1 Analytical

The most direct approach would be using analytical models to obtain the full time-

history response of the structure to ground motions. Ideally, this analysis has to be repeated

for a sufficient number of ground motions to incorporate the ground motion hazard of the

selected region. Furthermore, to account for uncertainties in structural properties, a Monte

Carlo simulation has to be conducted, obtaining responses for each combination of structural

configuration and ground motion. Kwon and Elnashai[  9 ] did exactly this to develop fragility

curves for several classes of RC buildings.

In the absence of adequate ground motion data extending the range of intensities of

expected ground motion hazard, a smaller set of ground motions can be selected and scaled

to each intensity level. Then the scaled ground motions can be used to conduct full Monte

Carlo simulations. This is called incremental dynamic analysis and is widely used in the

scientific community[ 25 ].

However, conducting full time-history analysis of complex analytical models for these

many configurations is computationally expensive. Several authors tackle this challenge by

using time-history analysis of simplified analytical models for Monte Carlo simulation instead

of complex models. These models include stick models[  13 ], equivalent SDOF models[  42 ],

simplified and other physics-based surrogate models[ 46 ]. One commonly used method which

uses equivalent SDOF models to obtain the maximum roof drift of a building is the displace-

ment coefficient method, where the estimate for roof drift ratio obtained using an elastic

SDOF system with the same fundamental frequency as that of the building is multiplied

with the inelastic displacement ratio to obtain an estimate for the inelastic displacement ra-
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tio. Lin and Miranda [  47 ] instead used a first-mode elastoplastic SDOF system to estimate

the inelastic roof drift directly.

Freeman[ 48 ] developed the capacity spectrum method to determine the performance of of

structures to ground motions for the purpose of seismic design. In this procedure, pushover

curves are first obtained by using static analysis by applying a lateral force distribution

according to the fundamental mode shape on the complex analytical model to obtain the

relation between the base shear force and roof displacement. This is then usually transformed

to spectral acceleration-spectral displacement space by using an equivalent SDOF system

with the same fundamental mode as the actual system, the dynamic properties for which are

obtained from the characteristics of the pushover curve. The curve thus obtained is called

the capacity spectrum. The intersection of the capacity spectrum with the response spectra

is called the design point and is used as a measure of the performance of the structure. In

this manner, the complex dynamic problem is converted to a simpler quasi-static problem.

While this method was initially designed for design purposes, it has been extensively used for

obtaining maximum responses for fragility analysis and is also a method that is suggested

by HAZUS[  6 ].Usually, authors validate the capacity spectrum method by comparing the

results obtained to the responses obtained from full time-history analysis[  14 ], [  17 ]. Certain

authors choose to use simplified analytical models instead of complex models for the pushover

analysis further reducing the computational time[  35 ].

Mosalam et al.[  31 ] developed the adaptive pushover analysis method, where they update

the shape of the static lateral load on the structure based on the changes in the fundamental

mode shape as the structure starts to behave nonlinearly. In this way, the dynamic properties

of the equivalent SDOF system obtained are modified to capture nonlinearities. Rossetto and

Elnashai[ 28 ] demonstrated the use of a similar adaptive pushover analysis for the fragility

analysis of RC structures.

Several authors have pointed out the limitation of the pushover analysis method. The

pushover curve is obtained using the assumption that the fundamental mode dominates the

response of the structure[ 31 ], which is not necessarily true for all types of structures. Chopra

and Goel [  49 ] tried to address this limitation by presenting an improved pushover analysis
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method with evaluation of peak responses at multiple modes of vibration and then combining

the results to get the estimate for the peak response.

In some studies, authors avoid having to conduct a full Monte Carlo simulation by sam-

pling points selectively to cover the entire parametric space without having to run the analysis

for every combination of structure and ground motion. Latin Hypercube Sampling (LHS)

is a commonly used technique by many authors[  11 ], [ 26 ], [ 34 ] to sample points uniformly

throughout the entire space. Other sampling techniques such as the uniform design method

have also been used by researchers[ 19 ].

Ultimately, the values of maximum response obtained, and thus the fragility calculations,

vary based on the type of method used. Nielson and DesRoches[ 26 ] compared fragility results

obtained for bridges using nonlinear time-history analysis to results obtained using capacity

spectrum analysis and found significant differences between the two methods. They explained

the differences by pointing out the differences in modeling techniques and inventory used.

Park et al.[  50 ] conducted a fragility analysis of low-rise unreinforced masonry buildings

using three different models with different levels of out-of-plane wall stiffness considered and

found that the seismic response was very sensitive to the level of out-of-plane wall stiffness

considered. They also noticed variability in responses they obtained compared to the results

obtained using recommendations from HAZUS[  6 ] and used similar reasons to justify the

differences.

2.8 Knowledge-Based

Knowledge-based methods for the generation of fragility curves rely on observed damage

during past earthquakes and empirical equations to develop fragility curves.

Using observed damage for fragility analysis is expected to be the method since it is based

on observed damage as opposed to a modeled system. Shinozuka et al.[ 4 ] used maximum

likelihood analysis of damage data of 770 single support RC viaducts columns with similar

geometry and reinforcements following the Kobe earthquake in 1995 to develop empirical

fragility curves.
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Lagomarsino and Giovinazzi[ 35 ] developed fragility curves using empirical equations as

a function of the vulnerability index (V), and ductility index (Q), the values for which

depend on the building type and construction. They accounted for randomness in structural

properties by considering a range of vulnerability index values.

One difficulty of using knowledge-based methods is that post-earthquake damage ob-

served in one region is not necessarily applicable in other regions due to the differences in

ground motion hazards and structural types and practices. Rossetto and Elnashai[  21 ] used

damage data from 340,000 structures from 29 surveys covering 19 earthquakes for risk assess-

ment of European RC structures. In their study, the non-European fragility curves can be

used for the fragility analysis of similar European structures. However, they noted that this

finding was based on a small amount of data and recommended not to apply such techniques.

Straub and Der Kiureghian[ 51 ] proposed a method to include statistical dependencies among

different observations to account for the uncertainty in the fragility of equipment in electric

substations.

The second type of knowledge-based method is using empirical equations to obtain

fragility functions. Mahsuli and Haukaas[ 52 ], [  53 ] developed fragility curves to assess the

seismic risk to the structures in Vancouver using different empirical equations.

2.8.1 Data-Driven Methods

Guan et al.[  54 ] developed ML-based data-driven models using several ML algorithms and

the spectral accelerations and displacements at different modal periods as inputs. Kiani et

al.[ 55 ] used classification algorithms to classify the response of an 8-story SMRF building

into two classes based on the maximum story drift ratios and developed fragility curves

using the trained algorithms. Similarly, Wang et al.[  56 ] used artificial neural networks for

the fragility analysis of a single structure and obtained a R2 value of 0.93 and 0.96 in training

and testing using 80 training data points. Both of these studies did not consider uncertainties

in structural properties. Mitropoulou and Papadrakakis[ 57 ] used neural networks to obtain

the seismic demands due to ground motions on selected RC buildings.
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Gidaris et al.[  58 ] developed a surrogate framework using kriging for the prediction of

maximum story drift and floor acceleration. They obtained models with R2 as high as 0.96

and errors within 15% for the prediction of maximum story drifts. Micheli et al.[  59 ] presented

a multiple surrogate modeling framework using different kriging-based surrogate models for

the prediction of maximum drifts and accelerations of each floor for wind loads. The most

commonly used machine learning methods among these papers are artificial neural networks,

support vector machines, Gaussian process regression (kriging), and linear regression[  2 ].

Esteghamati and Flint [  60 ] used several machine learning techniques for the prediction

of seismic loss with R2 values of up to 0.96 while varying the topology of the building

considered. Ghosh et al.[ 61 ] used different classification algorithms to predict the seismic

response of bridge components and obtained a R2 value of 0.70 or higher for each type of

model for different components of bridges to develop fragility curves.

Some authors also used neural networks to predict the entire time-history response of

structures to ground motions. Huang et al.[ 62 ] used a deep neural network to predict the

modal properties and the time-history response of a particular structure to various intensities

of the ground motions from the Kobe earthquake. Oh et al.[  63 ] used convolutional neural

networks to predict the displacement response of a benchmark structure under different

ground motions. Zhang et al.[  64 ] used physics-guided convolutional neural networks using

information from the equation of motion to build the loss function, to obtain the displacement

time-history response of a 6-story hotel for different ground motions.

2.8.2 Comparisons of Different Types

To the best of my knowledge, few studies have been done to compare different types

of modeling approaches used to obtain the values of engineering demand parameters. One

study which does this comparison is conducted by Esteghamati and Flint[ 5 ] who make this

comparison for the prediction of hazard performance measures for mid-rise concrete frame

buildings. They used similar structures from INSSEPT database[  65 ] for developing their

knowledge-based surrogate models, support vector machines for data-driven surrogate mod-

els, and the capacity spectrum method for analytical models. They found that physics-based
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models captured the trend in a better manner than data-driven and knowledge-based mod-

els. Furthermore, they found that physics-based models performed well when predicting

the responses of structural configurations outside the training data, while the prediction of

loss using the data-driven surrogate had higher errors. They recommended a technique to

sequentially use the three different types of models for design, starting with the knowledge-

based model to make initial decisions regarding the structural system to narrow down the

possible options, followed by data-driven models to get bounds for obtaining constraints for

the physics-based surrogate, which is finally used to obtain the optimum design.

2.9 Fragility Curve

Once the damage states are obtained for different structure-ground motion combinations,

these can be converted to the probability of damage states in various ways. The most com-

monly used way is to use the ratio of structural configurations exhibiting a particular damage

state at a given value of intensity measure to the total number of structural configurations

analyzed as the probability of the structure exhibiting that particular damage state at the

corresponding intensity level. Alternatively, instead of quantifying the EDPs, the fragility

of structures can be directly quantified by using empirical equations.

A set of the probability of damage state-IM pairs is obtained for different damage states.

These are plotted on the graph and a function is used to interpolate the values in between.

Usually, it is assumed that a lognormal function is a good fit to determine the relationship

between the probability of exhibiting a damaged state and the ground motion intensity

measure. Buratti et al. performed three different statistical tests to demonstrate that the

assumption of drift values being distributed log-normally is allowed[ 66 ]. The parameters of

the best-fitting lognormal curve are obtained by regressing the probability values against the

intensity measures. Many authors, however, use the parameters recommended by HAZUS[ 6 ]

based on expert judgment to fit lognormal curves for fragility.
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2.10 Component Level Fragility Curves

Fragility curves can also be obtained separately for each component or the system as

a whole. This is more often done for bridges than other kinds of structures, owing to

the differences in different bridge components. When component-level fragility curves are

obtained, they need to be combined using appropriate techniques to obtain the system-level

fragility curve.

Lang and Bachmann[ 67 ] used a simple rule assuming that the capacity of a a building

with structural walls system is the sum of the capacities of individual walls.

Lupoi et al.[ 29 ] used a system function to determine the state of a highway viaduct

system in terms of its components. Nielson and DesRoches[ 43 ] used component level fragility

curves to determine the most critical components. They used the correlation between the

probabilistic seismic demand models of different components to develop the system-level

fragility curves for the bridges they considered. They found that considering just a single

bridge component to depict the fragility of the entire bridge significantly underestimated the

vulnerability. They also found that the bounds found using this method are narrower when

a single component is significantly more fragile than the remaining components. In another

study, Nielson and DesRoches[ 26 ] followed a similar approach to obtain system-level fragility

curves and compared the results to results obtained using guidelines from HAZUS[ 6 ], which

does not include the effects of abutments on the overall fragility of a bridge, and found that

there was a considerable difference between the results.

Choi et al.[ 27 ] took this one step further by modeling the fragility of subcomponents

and using the curve from the most vulnerable subcomponent to get the fragility of each

component of the bridges they selected. They then used first-order reliability bounds to

obtain the upper and lower bounds of the system-level fragility curves from component-

level fragility curves assuming that bridge components are aligned in series, with the failure

of one component causing the failure of the entire system. Pang et al.[  19 ] also made use

of first-order reliability to demonstrate that the overall fragility of a bridge is larger than

the fragility of any single component. Pan et al.[ 24 ] demonstrated that using second-order
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reliability to combine component fragility curves provided produced narrower bounds than

first-order reliability.

2.11 Applications

While the main application of fragility curves is to quantify the risk to a structure or a

set of structures to ground motion hazards, these have been used for other applications as

well. Fragility curves can be used to determine the component of a structure that is most

fragile[ 26 ].

Developed fragility curves can be converted to estimates of different types of losses (eco-

nomic and casualties) to structures following an earthquake. FEMA[  68 ] developed damage

functions to convert the probabilities of failure to losses for various types of buildings.
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3. PROBLEM DESCRIPTION

It is important to properly define the scope of the study at the start. This chapter sets up

the study that we undertake in this thesis document and lists the set of questions that we

answer in the following chapters.

3.1 Overview

The main objective of the study is to develop fragility curves by using different surrogate

models to estimate the maximum responses to ground motions. A particular building is

selected for this study from past work by Tabatabaiefar et al.[ 69 ]. The authors of the paper

developed a computational model using OpenSees and validated the model using scaled-down

shake table tests for a 15-story steel moment resisting frame building. Section  3.2 provides

a detailed description of the selected building.

In this thesis, both the properties of the building as well as the ground motion data

are varied. Surrogate models that are to be developed need to be able to make predictions

across the range of these parameters. The surrogate models thus developed can be used for

studies such as parametric analysis, optimization studies and conceptual design, and fragility

analysis while considering uncertainties in the structure. More information about varying

the structural properties and ground motion data are provided in Section  3.3 of the chapter.

Finally, a uniform criterion needs to be fixed to evaluate the performance of each of the

developed surrogate models. Section  3.6 describes the performance metrics used to evaluate

and compare different surrogate models that are built in this study. The study intends to

answer a set of questions. Some of these questions are listed in Section  3.7 .

3.2 Building Model Selected

A 15-story regular moment resisting frame building is selected from literature[ 69 ]. The

authors have constructed the scaled-down structure made of steel plates and have conducted

shake table tests on the structure with amplitudes from four well-known ground motions

(Kobe earthquake 1995, Northridge earthquake 1994, El Centro earthquake 1940, and Hachi-

48



nohe earthquake 1968). They scaled the structure to be able to conduct shake table tests

using available facilities. They have provided the material and geometric properties of all

the components used in their study, as well as the time history and peak responses obtained

from the shake table tests.

These results are used in this thesis to build and validate an Abaqus model to obtain the

high-fidelity data required to train and test the surrogate models. The paper by Tabatabaie-

far et al.[  69 ] shall be referred to as the "reference paper" from here onward in this thesis. The

study in this thesis has been conducted on the scaled-down building provided in the reference

paper since the scale of the building in question does not affect the performance of surrogate

models generated in this study. The ground motion data has also been scaled accordingly to

get results that would be consistent with the responses obtained when applying the unscaled

ground motion to the unscaled building. Since the objective of this thesis is just to develop

and compare various surrogate models, scaling down the building under consideration does

not affect the results obtained. The following parts of this section provide the details of the

scaled building as described in the reference paper.

3.2.1 Geometry

The building is a 15-story regular moment resisting frame building with a single bay and

equal story heights throughout. The geometric scaling factor used by the authors of the

paper is 1:30. Table  3.1 is a copy of Table 1 from the reference paper, providing the details

regarding how different geometric properties scale with the scaling ratio λ.

Table 3.1. Scaling of different properties in terms of the geometric scaling factor (λ)

Property Scaling Property Scaling Property Scaling
Mass Density 1 Acceleration 1 Length λ

Force λ3 Shear Wave Velocity λ1/2 Stress λ
Stiffness λ2 Time λ1/2 Strain 1
Modulus λ Frequency λ−1/2 EI λ5

Source: Tabatabaiefar et al.[  69 ]
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The height of each story is scaled down to 0.1 m, resulting in the total height of the

structure of 1.5 m. The base plate is designed as a square plate with a side length of 500 mm

and thickness of 10 mm. Each floor slab is designed in the form of identical square plates

with a side length of 400 mm and thickness of 5 mm. 4 identical rectangular plates with

a width of 40 mm and thickness of 2 mm are used as columns. All these dimensions are

provided in Table  3.2 . Figure  3.1 is the copy of the figure of the shake table specimen used

in the reference paper.

Table 3.2. Dimensions of building elements

Element Length(mm) Width(mm) Thickness(mm)
Base Plate 500 500 10
Floor Slabs 400 400 5

Column Plates 100 

1
 40 2

3.2.2 Material Properties

The authors of the reference paper indicate that they designed the scaled-down prototype

by using steel plate grade 250 of AS/NZS 3678-2011, with a minimum yield stress of 280 MPa

and a minimum tensile strength of 410 MPa to build each of the parts of the building frame.

The Young’s modulus of the selected steel plate material is specified as 200 GPa. The authors

of the reference paper specified a density of 7850 kg/m3 in their numerical model. They also

estimated a damping ratio of 1.1% for the building using free vibration tests.

3.3 Variation of Building Properties

Section  3.2 described the base building selected for the study. In this section, we describe

how the variations in building properties that are considered in this study when developing

surrogate models. The building properties can be varied in a variety of ways; the geometry

of the structure can be varied, or the properties of the material can be varied. Irregularities

can also be introduced along the horizontal or vertical dimensions. It is outside the scope of
1The length here refers to the height of column per story
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Figure 3.1. Shake Table Specimen Used by Tabatabaiefar et al.[  69 ]

this study to incorporate each of these methods in the study. Therefore, for this study, we

vary the building properties by just changing the material properties of the entire structure

without changing the geometry or adding any irregularity along any dimension.

The two fundamental dynamic properties of a structure are its mass and its stiffness.

Both these properties are varied by changing the material properties. The mass of the

structure is changed by varying the density of the building material, while the stiffness of

the structure is changed by varying Young’s modulus of the building material. Both the

density and Young’s modulus of steel are modeled as normally distributed random variables,
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(a) PDF for the Density of Steel (b) PDF for Young’s Modulus of Steel

Figure 3.2. Probability Distributions of Structural Parameters Modeled as
Random Variables

staying consistent with past research, with the mean value being the deterministic value

assumed in the reference paper and the variations selected from González and Zapico[  70 ].

The values provided are assumptions made by the authors of the aforementioned paper and

other works in the past have assumed different values. González and Zapico[  70 ] assumed a

coefficient of variation of 7.5% for the density of steel and coefficients of variation of 5% and

11.5% for stiffness of columns and beams respectively. For this study, we have assumed the

same value for the coefficient of variation of density of steel and assumed that the coefficient

of variation for Young’s modulus of steel is 8% (about the average of the values provided by

González and Zapico[  70 ]). The means, coefficients of variation, and the standard deviation

assumed are listed in Table  3.3 , and the corresponding probability distributions are plotted

in Figures  5.3a and  5.3b .

As described later in Chapter  2 , different researchers have previously varied properties

such as the yield strength of steel, and damping ratios. However, they found that changes in

these parameters do not affect the response of a structure (or the fragility of the structure)

to ground motions as do the stiffness and the mass of the structure[ 29 ]. Hence, in this study,

just the density and Young’s modulus of steel are considered to be random variables and

all other structural properties are assumed to be deterministic. It is assumed that there

is zero correlation between the density and Young’s Modulus of steel. This follows what
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is usually assumed in literature when the exact correlation between two random variables

is not known[ 29 ] The values of all other structural properties are kept the same as in the

reference paper and as listed in Section  3.2.2 .

It is important to note that the geometry of the building is not varied in this study,

although changing the geometry has significant effects on the response of the structure.

Similarly, irregularity is not added to the building in any form.

Table 3.3. Parameters of Distribution of Density and Young’s Modulus of Steel

Quantity Mean Coefficient of Variation Standard Deviation
Density 7850 kg/m3 7.5%[ 70 ] 588.75 kg/m3

Young’s Modulus 200 GPa 8% 16 GPa

Selecting a distribution as shown above helps sample the points accordingly when gen-

erating high-fidelity data and also helps to obtain regression parameters when conducting

fragility analysis. The surrogate models we are developing should have the capability to

accurately predict the responses for configurations of buildings across the range of structural

properties defined above.

3.4 Ground Motion Data

Ground motion data for this thesis is obtained from the following ground motion databases:

Pacific Earthquake Engineering Research Center (PEER) Ground Motion Database [  71 ]–[ 73 ],

and Center for Engineering Strong Motion Data (CESMD)[  74 ]. Ground motions are selected

randomly to reflect the distribution of ground motions in real life. Due to this random selec-

tion, similar to the real world, the number of ground motions selected at a given magnitude

is inversely proportional to the magnitude. Although the distribution of the selected ground

motion reflects the distribution observed in real, this could be a potential source of bias

in the data as a majority of the ground motions are concentrated on the lower intensity

side. Ground motions with magnitudes less than 3 are left out because there is almost no

data recorded with such low magnitudes in databases and because these do not cause appre-

ciable responses in buildings. Historically important ground motions and ground motions
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Figure 3.3. Distribution of Peak Ground Acceleration Among Selected
Ground Motion Records

with unique characteristics such as high peak ground accelerations, are consciously included

among the selected earthquakes. Initially, a set of 125 ground motions records is downloaded

from the two databases. Later another set of 25 ground motions is added to the list. Figure

 3.3 shows the distribution of peak ground accelerations for ground motions selected. The

time steps of the selected ground motions are multiplied by the square root of the scal-

ing factor (λ1/2 = 1
5.48) to stay consistent with the geometric scaling used for the building

dimensions.

3.5 Response Parameters

This section of the chapter provides details regarding the parameters of interest that

need to be predicted by the surrogate models in this study. Three response parameters are

chosen.

First among the three, is the fundamental frequency of the structure. This is not a

response variable as it is an intrinsic property of the structure and does not vary with the

ground motion input. The only factors that affect the value of the fundamental frequency

of the structure are the structural properties: density and Young’s modulus of steel. De-

termining the natural frequencies of a structure is important because the way a structure
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behaves under ground motion excitations depends on these frequencies. In a lot of cases, the

fundamental frequency of the structure dominates the response. This is why, in the struc-

tural engineering community, many different characteristics of a system such as its spectral

acceleration, velocity, and displacement are defined using the fundamental frequency of the

system. The fundamental frequency is also used to build equivalent single-degree-of-freedom

or discrete multi-degree-of-freedom systems that are used to approximately determine the

response of the system. In this study, the surrogates developed for the prediction of the

fundamental frequency of the system are then used for both of the above purposes when

building surrogates for the remaining two response parameters. Chapter  5 provides more

details about the methods used to develop surrogate models for predicting the fundamental

frequency of the structure with varying properties.

The next two response parameters are the maximum roof drift ratio and the maximum

story drift ratio. These two parameters vary with both the ground motion characteristics as

well as the structural properties. Structural damage a structure undergoes during a seismic

event is dependent on the amount of drift of the structure during the said event. Even a

part of the nonstructural elements of a structure is sensitive to the amount of drift caused

during ground motions. Therefore the focus when designing structures for seismic excitation

has moved towards limiting drifts in the recent past[ 1 ]. For the same reasons, in a lot of

studies, the seismic fragilities, vulnerabilities, and risks of financial losses to a structure

or a region are computed by comparing the amount of drift demand imposed by expected

ground motions in the region to the drift capacities of the structures under consideration.

Therefore, these drifts are important measures to determine during the design as well as risk

assessment of buildings. More information regarding the development of surrogate models

for the prediction of the maximum roof drift ratio and the maximum story drift ratio is

provided in Chapter  6 .

3.6 Performance Metrics

Various statistical values have been used to determine the performance of surrogate

models. Since predicting the maximum responses of a structure to seismic ground motions
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is effectively a regression problem, any performance metrics that are traditionally used for

regression problems can be used here. The two performance metrics selected in this study

are the Normalized Root Mean Squared Error (NRMSE) and the R2 value (coefficient of

determination).

The RMSE value provides an average measure of the error in prediction by averaging

the squares of differences between the predicted values to the actual values and taking the

square root. In other words, the RMSE provides the standard deviations of the residuals of

the prediction and therefore measures the spread of the error. Therefore, the lower the value

of RMSE, the more accurate the model.

RMSE =

√√√√(
N∑

i=1

(yi − ŷi)2

N
(3.1)

The RMSE value can be further normalized in various ways. Two of the most common

ways used to normalize the RMSE values are dividing by the range of the actual data and

dividing by the mean of the actual data. Here, the RMSE is normalized by dividing by the

mean value of responses in the training set to obtain the NRMSE. Normalizing the RMSE

value in this manner helps us to compare the performance of surrogates trained for the

prediction of different types of data and with different magnitudes of data. This type of

normalization could also be thought of as the coefficient of variation of the residuals.

NRMSE = 1
ȳ

√√√√(
N∑

i=1

(yi − ŷi)2

N
(3.2)

where ȳ is the mean of actual response values, ŷ are the predicted values.

It is difficult to determine what a good value of NRMSE is. The determination of what

value is good varies based on the application and usually involves judgment. In this study,

an NRMSE value of 0.5 is targeted for the developed surrogate models, both in validation

and testing. This value is selected from previous experience and is usually considered a good

value in most fields and matches what has been targeted in previous studies[  58 ], [  60 ].

The R2 value or the coefficient of determination measures the goodness of fit of a model

in terms of how well the predictor variables capture the variations in the outputs. The R2
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value can also be thought of as the factor by which the variance in the prediction errors is

less than the variance in the response.

R2 = 1 − Sum of Squares of Residuals

Total Sum of Squares
= 1 −

∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2 (3.3)

The R2 value is always between 0 and 1. An R2 value of 1 means that the model captures

all the variations in the output data. Meanwhile, an R2 value of 0 that no variation in the

output is captured by the input parameters of the model, or in other words, the output

predicted is the same irrespective of the actual value. Again, deciding a good value of

R2 is a difficult task and involves judgment based on the problem at hand and previous

experience. In this study, an R2 value of 0.95 (which means that 95% of the variation in the

response parameters or equivalently 78% of the standard deviation of the response parameter

is captured by the predictor parameters) is chosen as the target for the surrogate models in

both validation and testing.

The RMSE and the R2 values together are usually considered sufficient to determine the

performance of different models although this varies based on the criticality of application

of results. In this study, these two performance metrics are computed for both validation

and testing. For validation, k-fold cross-validation[ 75 ] is used. In k-fold cross-validation, the

training dataset is divided into k subsets. In each turn, 1 of the subsets is kept for validation

while the model is trained on the remaining k-1 subsets. This process is repeated k times until

each of the subsets is used for validation for the model trained on the remaining subsets.

Although this increases the time required for model training and validation, it is a more

effective way to use all the training data and also reduces overfitting. Also, as opposed to

holdout validation, in k-fold cross-validation, the entire dataset is used in training the model

and it also gives a better idea regarding how the model generalizes on unseen datasets.

3.7 Research Questions

This section lists a subset of the questions that this study intends to answer:
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1. What are the different ground motion parameters that capture the ground motion

characteristics well enough to predict a particular response parameter? In other words,

which ground motion properties correlate best with response parameters, so that they

can be used as input parameters into surrogate models to predict these responses?

Also, what is the right choice of ground motion intensity measure to condition the

engineering demand parameter when developing fragility curves?

2. How many training data points are required to train different types of surrogate models

to predict different response parameters accurately when not varying the properties of

the building?

3. How does the number of training points increase as the properties of the building under

study are also changed along with the ground motion data?

4. How does the performance of each type of surrogate model compare against each other?

5. What is the reduction in computational cost when surrogate models are used for various

applications as compared to the use of complex nonlinear computational models?

6. Is the reduction in computational time significant enough to justify the error associated

with using surrogate models instead of high-fidelity nonlinear computational models?

7. Are the fragility curves computed using surrogate models accurate enough to warrant

the reduction in computational time?
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4. HIGH-FIDELITY DATA

Before we start developing surrogate models, we have to develop a means to collect or

generate high-fidelity data that meets the needs of generating a surrogate model required for

a given task. High-fidelity data is required to train surrogate models and test the performance

of the developed surrogate models by comparing them using the high-fidelity data (considered

the ground truth). Several approaches are available to obtain high-fidelity data depending

on the problem under consideration. In certain cases, high-fidelity data might be easily

available, while in certain other cases, high-fidelity data might be scarce and difficult to

generate because of the lack of adequate knowledge regarding the problem.

Three of the widely used approaches to obtain high-fidelity data that can act as ground

truth are experimental, analytical/numerical, and observational/empirical approaches. Ex-

perimental approaches are used when it is feasible to develop physical experimental models

that can closely resemble the real system. While experimental results are usually considered

to be more accurate, as they resemble the actual system and capture the physics behind

the actual system more accurately, it is not always practical to build experimental models.

Furthermore, experiments might have their own set of errors because of inaccuracies in the

setup and simplifications from the real system.

Analytical and numerical methods are useful to generate data in such cases where the ex-

perimental study becomes infeasible. This would however require an adequate understanding

of the system to capture the physics of the real system in a set of mathematical equations.

Therefore, there is always a level of simplification associated when using analytical and nu-

merical methods (in other words, there is always a certain level of epistemic uncertainty

built into data generated by analytical and numerical methods). The use of analytical and

numerical methods becomes most advantageous when a lot of data is to be generated and it

is not practical to build an experimental model for each of these configurations.

In certain cases, observational and empirical data could be available for the problem at

hand. The availability of such data helps reduce the amount of time to obtain high-fidelity

data. In recent years, researchers have started pooling their resources together to develop

databases that act as sources of data for various types of problems. Benchmark problems and
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competitions have encouraged researchers to develop and document standardized data that

can be used by other researchers. However, the biggest restriction to such data is that the

observational and empirical data is usually limited or incomplete. Furthermore, researchers

documenting observational data usually use different methods to gather and document the

observational data, making it difficult to use multiple sources together. Even when databases

with high-quality data are available, these data are relevant for certain very specific problems

only and cannot be generalized easily to other cases.

To test the behavior of structures under seismic ground motions, the experimental method

of generating data is to build physical models of the building and conduct shake table tests by

applying the ground motion data to the physical model using actuators. Several researchers

scale down the building using certain laws, like done in the reference paper, to make it more

practical to build the physical specimen and test on available shake table facilities. This

however becomes impractical when the responses from many different configurations of a

building are required as is the case in this study. Observational methods of obtaining high-

fidelity data include using results from surveys and investigations conducted after previous

seismic events. However, as mentioned before, observational data are very specific and the

methodologies used to obtain and record these data vary from person to person. Empirical

equations available in design standards or from other past literary works can be used to

generate high-fidelity data, but these too are usually simplifications and apply to very specific

cases. Numerical models can be developed and solved using finite element methods to obtain

the response of a building to ground motions computationally. Many different commercial

and open-source finite element software are available to conduct this analysis.

In this thesis study, computational and numerical models are used to generate high-

fidelity data used to train and test the surrogate models. This chapter describes the meth-

ods that are used to generate high-fidelity data in this thesis, along with the associated

assumptions and levels of complexity.
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4.1 Abaqus Models

Abaqus FEA software[ 76 ] is used in this thesis to develop high-fidelity data. Abaqus

is a versatile commercially available finite element software with various structural analysis

functionalities that help to create computational models with various levels of complexity.

Furthermore, Abaqus generates input files before solving the system of equations to obtain

the response of the system. These input files are easy to understand and manipulate, thus

allowing the use of simple codes to run the Abaqus models using different values of parameters

to generate a whole set of data. This section provides the details of the different Abaqus

models created to generate high-fidelity data for the studies conducted as a part of this

thesis.

Different types of Abaqus models are created based on the level of complexity required

for particular studies mentioned in the following chapters. Initially, a nonlinear 3D model is

built in Abaqus and validated using the results from the reference paper. However, running

the 3D model proved computationally expensive, requiring 2-4 days to generate data for a

single sample point. Using this model would require tens of weeks to generate enough data

to develop acceptable surrogate models.

Therefore, using the assumption that ground acceleration is happening along a single

horizontal dimension, a nonlinear 2D Abaqus model is developed and validated. This sim-

plification reduces the number of degrees of freedom at which the equation of motion has

to be solved, without introducing any errors in the response along the direction of interest.

The time for generating data using the 2D model is about 2-4 hours per sample point, which

results in a big decrease in the time required to generate high-fidelity data.

A linearized 2D model is also created using the modal dynamics option in Abaqus to

generate pseudo-high-fidelity data for preliminary studies where generating data quickly is

more important than capturing the complexities of the problem. These preliminary studies

are used to inform the generation of actual high-fidelity data using the nonlinear 2D model.

This also allows us to understand how the nonlinearities affect the training of surrogate

models. The linearized 2D model takes about 1-2 minutes per data point.
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The following subsections provide a detailed description of the steps used to create these

models. Enough details are provided to allow any future researcher to reproduce the models if

required. The subsections follow the different tabs that are provided in Abaqus for modeling.

4.1.1 Geometry

This subsection describes the geometry created for each of the Abaqus models.

3D Model

For the 3D model, each element of the building is modeled as a 3D deformable element[ 76 ]

in Abaqus. Perimeter beams are included in the frame, deviating from the actual building

prototype, to make it easier to define contact between different elements accurately. How-

ever, the lateral dimensions of the beams are kept negligibly small (as shown in Section  4.1.3 

below) to ensure that adding these beams to the frame does not change the responses signif-

icantly. Beams and columns are modeled using deformable 3D wire elements[ 76 ], while the

base plate and floor plates are modeled as deformable 3D shell elements[ 76 ]. These choices

are justified because beams and columns in moment-resisting frames act primarily as bend-

ing/axial members with the dimension along the length considerably larger than the other

two dimensions and floor slabs act as membranes with 2 dimensions considerably larger than

the dimension along the thickness. Using this simplification allows a reduction in the number

of degrees of freedom without introducing significant errors compared to modeling all the

members as solid elements. Dimensions for these elements are selected to be consistent with

Table  3.2 (the length of beams is assumed to be the same as the length of floor slabs).

2D Model - Linear and Nonlinear

For the 2D model, each element of the building is modeled as a 2D planar deformable

element[ 76 ] in Abaqus. Here unlike the 3D model, beams are not added, as it is easy to

provide accurate contact without requiring the addition of beams. Columns are modeled

using deformable 2D planar wire elements[ 76 ]. However, unlike in the 3D model, the base

and floor slabs are also modeled using deformable 2D planar wire elements here and the
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lateral dimensions are provided using the sections module in Abaqus. These choices are

justified because columns act as axial members with the dimension along the axial dimension

significantly longer than the lateral dimensions and since we are assuming that the ground

motion happens in one horizontal direction only and are interested in the response along

only this direction, we can simplify the slabs along the second horizontal dimension without

causing any error. These simplifications significantly reduce the computational cost required

to obtain data.

4.1.2 Material Properties

This subsection describes the material properties assumed for different elements of the

building. The same material properties are used in all of the models used in this study.

Steel is modeled as elastic-perfectly plastic to be consistent with the approach used in the

reference paper. This approach is also followed in the linearized model since including

material nonlinearities does not increase the computational cost significantly when using

modal analysis. Therefore, the linearized model is not entirely linearized as it still has

material nonlinearities (but it is linearized in the aspect that geometric nonlinearities are

ignored and the responses of the structure are assumed to be a linear superposition of the

responses of the natural modes of the structure).

The Poisson’s ratio of steel is assumed to be the average value of 0.28 as it is not provided

in the reference paper. Material damping is included to obtain a damping ratio of 1.1% for the

building as in the reference paper. Rayleigh damping is used to achieve this and the values

of α (coefficient for mass proportional damping) and β (coefficient for stiffness proportional

damping) are selected based on trial and error while ensuring the individual damping term

adds up to a damping ratio of 1.1% for the fundamental mode of response of the structure.

It is observed that results closest to those provided in the reference paper are obtained when

the entire material damping is assumed to be mass proportional and the portion of damping

that is stiffness proportional is assumed to be 0. This however means that the damping

for higher modes of responses is lesser, because their modal masses are smaller. Therefore,

even though using just mass-proportional damping results in lower amount of difference with
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respect to the results from the reference paper, it also means that the contribution of higher

modes to the overall response of the structure is increased.

The Young’s Modulus and density of steel are varied in the study as needed based on the

sample point being considered (as described in Section  3.3 ). For validation of the Abaqus

model, Young’s Modulus value of 200 000 MPa and density of 7.85 × 10−9 are selected to be

consistent with the values used in the reference paper. The material properties described in

this subsection are summed up in Table  4.1 below.

Table 4.1. Material Properties of Steel for the Structure

E (MPa) 

1
 ν σy (MPa) ρ(t/mm3)1 α (s−1)

200000 0.28 280 7.85 ×10-9 0.3075

4.1.3 Sections

This subsection describes the section properties provided for different elements in the

Abaqus models.

3D Model

Two types of sections are used in the 3D model. Homogeneous shell elements with

appropriate values of shell thickness (from Table  3.2 ) are assigned to the base and floor

slabs. Beam sections with appropriate profiles (consistent with dimensions in Table  3.2 )

are assigned to the columns members. Beam sections with width and depth of 0.01 mm are

assigned to the beam members added in the model. These values are smaller than all the

dimensions of all other elements by quite a few orders of magnitude and therefore adding

these beams to the building model does not impact the response of the building significantly.
1These values are varied in the studies conducted in the thesis document as mentioned in Section  3.3 
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2D Model - Linear and Nonlinearized

Beam sections are used for all the elements in the 2D model. Section dimensions are

selected to be consistent with  3.2 . Even the base and floor slabs are modeled using beam

elements with appropriate width and thickness as section dimensions.

4.1.4 Assembly

This subsection describes the approach used to assemble the parts into the building model

in Abaqus. The procedure used below is one of many equivalent ways in which this assembly

can be obtained.

3D Model

First, the columns and beams are assembled to form the frame of the structure. This is

merged to form a new part that resembles the entire frame. Similarly, all the floor slabs are

assembled, spaced at a distance equal to the height of each story between each, and merged

to form a part that resembles just the entire set of floors without the frame. This is shown

in Figure  4.1 . Finally, the frame, the set of slabs, and the base plate are all assembled by

using the various tools available in Abaqus.

(a) Frame (b) Slabs

Figure 4.1. Merged Parts for 3D Model
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2D Model - Linear and Nonlinear

First, the columns and the slabs (modeled as beams as described in  4.1.1 ) are assembled

to form the frame of the structure. This is merged to form a new part that resembles the

entire frame of the structure, with the slab included. Next, the frame and the base plate are

assembled using the various tools available in Abaqus.

4.1.5 Step

This subsection describes the step option selected in the step module in Abaqus created

for each of the Abaqus models.

3D Model and 2D Model - Nonlinear

Four steps are used to generate all of the data for the two nonlinear models. The first

step is the default initial step in Abaqus. A frequency step using the Lanczos solver[ 76 ] is

selected after the initial step to obtain the natural frequencies of the models. This step is

chosen from the linear perturbation steps[ 76 ] and carries out eigenvalue analysis to calculate

the natural frequencies of the structure. The third step is a static, general step[  76 ] that is

used to add self-weight to the structure. Adding the self-weight helps condition the problem

better when applying the ground motion accelerations onto the structure. The self-weight

added in this step is carried forward into the next step, which is a dynamic, implicit step[  76 ].

The Nlgeom option[  76 ] is kept on for both the third and fourth steps to allow the model to

account for geometric nonlinearities. The fourth step is used to apply the ground motion

loads onto the structure and obtain its dynamic time-history response. The increment size

is modified to match the sampling rate of the ground motions being applied and the total

time is selected to match the end time of the ground motion acceleration. Since all of the

ground motion data selected have peaks well before the end of the ground motion data, the

peak response of the building will be captured without running the analysis for times after

the ground motion data ends. All other step options are kept at the default values.
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2D Model - Linear

The first two steps for the linearized modal model are the same as the first two steps of

the nonlinear models. The default initial step is followed by the frequency linear perturbation

step[ 76 ] with the Lanczos solver. The third step in the linear model is the modal dynamics

step[ 76 ] from the linear perturbation sets of steps. This step allows for the application

of ground acceleration loads to the structure and like the third and fourth steps in the

nonlinear models, the time step for this step is modified to match the sampling rate of the

ground motion being applied and the end time is changed to match the end time of the

ground motion data.

4.1.6 Interaction

This subsection describes the various contacts and connections provided between different

parts of the structure.

3D Model

Since the frame elements are merged into a single part, the joints in the frame behave as

a tie contact. Therefore, at joints, the columns and beams have the same displacement.

Tie constraints with node-to-surface discretization[ 76 ] are defined at the intersections of

the columns with the base plate. The top surface of the base plate is selected as the master

surface and the nodes at the bottom of the columns are selected as the slave surface.

Similarly, the contact between the beams (which were intentionally added to define the

contact more easily) and the slabs are modeled using tie constraints with surface-to-surface

discretization with the top surface of the column and the perimeter of the beam as the master

surface and the floor slabs as the slave surface. All other properties of the tie constraints are

kept default and the tie constraint is maintained through all of the analysis steps.

Using tie constraints for these contacts implies that the displacements of interacting pairs

are the same at the point of interaction. This means that all the joints are perfect and there

is no slip occurring at any of the joints. This assumption, while not always true in real-case
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scenarios, helps improve the conditionality of the problem. This approach is consistent with

the approach used in the reference paper and a more detailed study that allows for slip at

joints is out of the scope of this study.

2D Model - Nonlinear and Linear

Since the frame elements (the column and the floor slabs) are merged into a single part,

the joints between these elements behave as a tie contact.

Tie constraints with node-to-surface discretization are defined at the intersections of the

columns with the base plate. The top surface of the base plate is selected as the master

surface and the nodes at the bottom of the columns are selected as the slave surface. All

other properties of the tie constraints are kept default and the tie constraint is maintained

through all of the analysis steps.

Once again, using tie constraints for these contacts implies that the displacements of

interacting pairs are the same at the point of interaction. This means that all the joints are

perfect and there is no slip occurring at any of the joints. This assumption, while not always

true in real-case scenarios, helps improve the conditionality of the problem. This approach

is consistent with the approach used in the reference paper and a more detailed study that

allows for slip at joints is out of the scope of this study.

4.1.7 Loads and Boundary Conditions

This section corresponds to the load module of Abaqus and provides information regard-

ing the loads and boundary conditions used in each of these models for each step.

3D Model

Two boundary conditions and a load is applied to the model. The first boundary condition

is a displacement boundary condition on the bottom of the base plate, with all 6 degrees

of freedom (3 translations and 3 rotations) fixed to zero at the initial step. This boundary

condition is propagated as is to the next 2 steps and in the final step (dynamic, implicit), the

constraint on the translation along the global z-axis (which is one of the horizontal axis for
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the building model) is freed while keeping all other degrees of freedom fixed. An acceleration

boundary condition is applied in the fourth step to apply ground acceleration along the z-

axis (the same horizontal direction along which the building is free to move in this step). To

do this, first, the ground motion data is added to the set of amplitudes in Abaqus, and the

magnitude of acceleration along the z-axis is modified to apply the acceleration in mm2/s (in

this case, since all the ground motion data is in units of g’s, the multiplier used is 9806.65).

Gravity load is applied in the third step (static, general) and is propagated to the fourth

step as is (gravity load helps to condition the problem better and reduce instabilities when

solving). Figure  4.2 shows the boundary conditions and loads applied at each step in the 3D

model.

(a) Steps 1 and 2 (b) Step 3 (c) Step 4

Figure 4.2. Boundary Conditions and Loads in the 3D Model

2D Model - Nonlinear

Similar to the 3D model, two boundary conditions and a load are applied to this model

too. The first boundary condition is a displacement boundary condition applied on the base

plate (which is modeled as a 2D planar wire), with all 3 degrees of freedom (2 translations

and 1 rotation) fixed to zero at the initial step. This boundary condition is propagated as is

to the second and third steps and in the final step (dynamic, implicit), the constraint on the

translation along the global x-axis (the horizontal axis along which the degrees of freedom

are being considered and along which the ground acceleration will be applied) is freed while
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keeping the remaining two degrees of freedom fixed. An acceleration boundary condition

is applied in the fourth step to apply the ground acceleration along the x-axis (the same

horizontal direction along which the building is free to move in this step). To do this, first,

the ground motion data is added to the set of amplitudes in Abaqus, and the magnitude of

acceleration along the x-axis is modified to apply the acceleration in mm2/s (in this case,

since all the ground motion data is in units of g’s, the multiplier used is 9806.65). Figure

 4.3 shows the boundary conditions and loads applied at each step in the 2D model.

2D Model - Linear

Just two boundary conditions are applied in the linear model. The first boundary con-

dition is a displacement boundary condition applied on the base plate, with all 3 degrees of

freedom (2 translations and 1 rotation) fixed to zero at the initial step. This is propagated

as is to the second step. In the third step (Modal dynamics), the displacement boundary

condition is built into the model automatically. The ground acceleration is applied to the

model using the acceleration base motion boundary condition in the modal dynamics step.

To do this, first, the ground motion data is added to the set of amplitudes in Abaqus, and

the magnitude of acceleration along the x-axis is modified to apply the acceleration in mm2/s

(in this case, since all the ground motion data is in units of g’s, the multiplier used is the

value of acceleration due to gravity.

4.1.8 Mesh

This section corresponds to the mesh module of Abaqus and provides the details of

meshing along with the reason for selecting particular types and sizes of mesh. The meshes

are kept as coarse as possible to get accurate results without any errors due to discretization.

3D Model

2-node linear beam elements in space (B31)[  76 ] are used to discretize the frame elements.

The use of linear elements with just 2 nodes instead of quadratic elements reduces the

computational cost significantly but it also introduces small inaccuracies into the model.
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(a) Steps 1 and 2 (b) Step 3

(c) Step 4

Figure 4.3. Boundary Conditions and Loads in the 2D Nonlinear Model

This decision can be justified in the following way: it is assumed in the study that the results

obtained from the Abaqus model are the ground truth. Therefore, the overall complexity

of the model is of the most importance and that does not reduce with the simplification

in the number of nodes. Hence, this simplification does not affect complexities that need

to be captured by the surrogate models when making predictions. In other words, the
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surrogate modeling process developed in this study will work similarly regardless of whether

the elements are modeled with 3 nodes or 2 nodes. Furthermore, the response parameters of

interest are the peak drifts, which can be obtained by extracting the displacements at nodes,

thus rendering the integration scheme inside the element less significant. An approximate

global seed size of 1 mm is selected resulting in a total of 29944 nodes and 30000 elements

for the whole frame. The remaining mesh properties are kept at the default values.

A linear 4-node doubly curved shell element, with reduced integration, hourglass control,

and finite membrane strains (S4R)[ 76 ] is used for the discretization of the floor plates and the

base plate. Using reduced integration is found to reduce the computational cost without sig-

nificantly affecting the accuracy of results, and the finite membrane strains option is selected

to accommodate nonlinearity in deformations. An approximate global seed size of 1.75 mm

is selected, resulting in 82369 nodes and 81796 elements for the base plate and 793500 nodes

and 786615 elements in total for the floor plates. The remaining mesh properties are kept

at the default values.

Therefore, the model has 905813 nodes and 898411 elements consisting of 868411 S4R

elements and 30000 B21 elements. Figure  4.4 shows the mesh obtained in this manner.

Figure 4.4. Mesh for 3D Model
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2D Model - Linear and Nonlinear

Planar 2-node linear beam elements (B21)[ 76 ] are used to discretize all the elements in

the model. Again, the use of linear elements with just 2 nodes instead of quadratic elements

with 3 nodes can be justified because it does not reduce the overall complexity of the model,

but does reduce the computational time. Hence, the approach of developing surrogate models

is not affected when considering the results obtained from the Abaqus models as the ground

truth. For the frame (which includes the floor slabs, modeled as beams as described in  4.1.1 ,

and columns), the global seed size is set to approximately 10 mm, resulting in a total of 887

nodes and 900 elements. The global seed size for the base (which is also modeled as beams

as described in  4.1.1 ) is also set to approximately 10 mm, resulting in a total of 51 nodes

and 50 elements. The remaining mesh properties are kept at default values.

Therefore, there are a total of 938 nodes and 950 elements, all of type B21, in the 2D

model. This is 3 orders of magnitude smaller than the number of nodes and elements in the

3D model, thus reducing the computational cost considerably, without affecting the accuracy

of the responses obtained. Figure  4.5 shows the mesh obtained in this manner.

Figure 4.5. Mesh for 2D Model
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4.1.9 Outputs

This subsection describes the set of outputs requested from Abaqus during the analysis.

When computational time is of immense importance, only the outputs that are required

can be requested and if higher computational power is available then other outputs may be

requested. The outputs that are required for this study are listed in this section. The outputs

that are requested are the same for all 3 types of Abaqus models used in this study. In the

frequency step, the fundamental mode frequency and the corresponding mode shape are

requested. In the remaining steps, displacement/velocity/acceleration and force/reactions

are the outputs that are requested in Abaqus. All of these are field outputs, and no history

outputs are required for this study.

4.1.10 MATLAB Code to Run Abaqus

As described in Section  3.3 , the Abaqus model has to be run by changing the values

of several parameters including Young’s modulus and the density of steel, and the ground

motion parameters (which includes the ground motion data, step increment time, and end

time). Doing this manually to collect the amount of data required for this study would be

impractical. Fortunately, Abaqus generates an input file that can easily be manipulated using

any programming language to change the parameters as required. Although Python is usually

the preferred programming language to alter input files generated from Abaqus, MATLAB

has been used in this study. Using MATLAB to generate data allows us to post-process the

obtained results and save the calculated responses of interest such as the frequencies and

peak drift ratios as MATLAB data files (.mat files). This makes it easier to access the data

later and use the functionalities in MATLAB to run various studies. Therefore, a MATLAB

code is written to change the Abaqus input file for multiple sample points and run the models

automatically. The code is used to update the input file obtained from Abaqus to include

the correct values for Young’s Modulus, the density of steel, and ground motion data. In

this study, the data is generated using 2 different versions of MATLAB, version R2021b, and

R2023a. Although the version of MATLAB does not affect the generation of data in any way,
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version R2023a has better functionalities for later studies, which is the reason MATLAB was

updated to this version as the project progressed.

4.1.11 Assumptions

The high-fidelity data obtained in this study from Abaqus models have simplifications

built in, in terms of the assumed material behavior and the physical behavior that is mod-

eled. In the real world, the behavior of the structure as well as material properties are

much more complex and it is expected that the challenge to develop a surrogate model to

make predictions with such levels of detail would be higher. This section lists a few of the

assumptions that are made while developing these models.

1. Just the moment resisting frame is modeled in Abaqus. The contribution to stiffness

and mass by other parts such as the infill walls and non-structural elements is assumed

to be negligible.

2. Steel is modeled as elastic-perfectly plastic. In reality, however, the behavior of steel

after yielding is more complex, with nonzero stiffness. However, the post-yield stiffness

of steel is usually negligible and the results do not vary by a lot when not considering

this portion. Using this assumption gives conservative results as the stiffness is modeled

to be lower than its actual value.

3. Usually, during ground motion excitations with significant magnitudes, it is observed

that buildings undergo damage, reducing their stiffness as the excitation progresses.

While this model considers a reduction in the post-yield stiffness of steel, it does not

account for certain damage such as slippage in joints or damage due to the presence of

defects in joints. Joints are assumed to be perfect, which is rarely the case in the real

world but is useful for this study on surrogate modeling.

4. It is assumed that the ground motion excitation acts just along one horizontal dimen-

sion of the building. However, this is not necessarily the case, and ground motion

excitations usually have significant components along both horizontal directions.
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5. The effect of vertical accelerations during ground motions is ignored. Although this is

a simplification, this follows what has been observed in past research[ 43 ].

There are additional assumptions for the modal analysis[  77 ]. These are the following:

1. Model is linear. Both material and geometric non-linearities are ignored.

2. It is assumed that the dynamic response of the building is a linear combination of the

natural modes of the system.

3. Because non-linearities are ignored, the resulting deformations are limited to smaller

values than the corresponding values when considering non-linearities.

4.1.12 Validation of the Abaqus Models

This section provides the details regarding the validation of the Abaqus models by com-

paring them with the results from the reference paper. Since the responses of interest are the

maximum drifts, the maximum drifts obtained from Abaqus at various floors are compared

with the corresponding values provided in the reference paper. This process is undertaken

for 2 of the 4 ground motion excitations used in the reference paper, namely, the Kobe

earthquake in 1995 (recording station: Kobe Japanese Meteorological Agency station) and

the El Centro earthquake in 1940 (recording station: El Centro). It is not done for the

Northridge earthquake in 1994 (recording station: Sylmar County Hospital ground) because

of a discrepancy in the time step of the obtained ground motion data set with the one used

by the authors in the reference paper, and for the Hachinohe earthquake in 1968 (recording

station: unknown) because lack of credible source with the ground motion recording data for

this earthquake. Care is taken to ensure that data from the same ground motion recording

station is used as used in the reference paper.

Figures  4.6 and  4.7 show the validation plots for both the 2D Nonlinear and 2D Modal

Abaqus models for Kobe and El Centro earthquakes respectively. While there are small errors

in the magnitudes of lateral displacements between the results from the Abaqus model to

the results from the reference paper (green or olive-colored curves), the trend is similar to
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the results from the reference paper. For the development of surrogate models, it shall be

assumed that results from the 2D Nonlinear Abaqus model are the exact high-fidelity data.

(a) Results from Abaqus 2D Nonlinear
Model

(b) Results from Abaqus 2D Modal Model

(c) Results from Reference Paper

Figure 4.6. Validation of Abaqus Models: Kobe Earthquake
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(a) Results from Abaqus 2D Nonlinear
Model

(b) Results from Abaqus 2D Modal Model

(c) Results from Reference Paper

Figure 4.7. Validation of Abaqus Models: El Centro Earthquake
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5. FUNDAMENTAL FREQUENCY

The first parameter of interest that is to be predicted in the study is the fundamental

frequency of the building. This parameter, unlike other parameters considered in this study

(described in the subsequent chapter), is an inherent property of the structure. In other

words, the fundamental frequency of a building is independent of the ground motion data

and is only dependent on the mass and stiffness of the building. Therefore, among the

parameters that are varied in the study, just the density and Young’s modulus of steel affect

the value of frequency.

Hence, the predictor variables used as inputs to the surrogate models are the two struc-

tural properties as shown in Figure  5.1 . The variation of these parameters is not random like

the variation of ground motion characteristics, consequently, it is easier to build accurate

surrogate models to predict the fundamental frequency of the structure. This implies that

the number of training points required to develop an accurate surrogate model to predict the

fundamental frequency will be lower than the number of training points required to predict

the structural responses considered in Chapter  6 . This also suggests that more accurate

surrogate models can be built to predict the fundamental frequency of the structure than to

predict the structural responses considered in the following chapter.

Figure 5.1. Flowchart of the Structure of the Surrogate Models for the Pre-
dictions of Fundamental Frequency

This chapter describes the study on the development of surrogate models to predict the

fundamental frequency of the structure. The chapter is divided into 3 sections. Section  5.1 

describes the methods used to sample points in the parameter space at which the high-fidelity

data needs to be collected. Following this, Sections  5.3 and  5.3.3 provide information about

the data-driven and physics-based surrogate models developed in this study for the predic-
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tion of the fundamental frequency of the structure. Both these sections have subsections

describing the methodologies used, the results obtained, and the lessons from developing

these types of surrogate models. Finally, Section  5.5 compares the different types of surro-

gate models developed for predicting the fundamental frequency of the structure using the

performance metrics described in Section  3.6 and provides the conclusions.

5.1 Design of Experiments

The first step in developing surrogate models is to select points in the parameters where

high-fidelity data will be generated to train the surrogate models on. This is referred to

as the design of experiments. Similarly, one also has to select a set of points to test the

performance of the surrogate models as well. This section covers the details of this process

for developing surrogate models to predict frequencies.

As mentioned in the  3.3 , the properties of the structure are varied by changing just the

mass and the stiffness of the structure. Since the fundamental frequency of the structure

depends on only these two properties, a small amount of data points are enough to train the

surrogate models to obtain accurate predictions. In this study, a central composite design

(CCD) with nine points across the Young’s Modulus - Density space is selected for obtaining

the high-fidelity data. The range for both these parameters in training is chosen as ±3

standard deviations to cover 99.87% of the parametric space. This is done to prevent the

surrogate models from requiring to extrapolate when making predictions as most statistical

methods struggle to make accurate predictions when extrapolating. MATLAB function

ccdesign is used to obtain this set of points for this study. Figure  5.2 shows the points

selected for training and Figure  5.3 shows the corresponding points along the probability

distributions of the corresponding random variables.

A set of 25 points ranging across Young’s Modulus - Density parameter space is selected

for testing the accuracy of the surrogate models. Latin-Hypercube Sampling is used for cre-

ating the testing data set to ensure that points are selected with equal probability across the

parameter space to determine if the developed surrogate models make accurate predictions
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Figure 5.2. Central Composite Design for Training Surrogates to Predict
Fundamental Frequency

(a) Selected Points for Density of Steel (b) Selected Points for Young’s Modu-
lus of Steel

Figure 5.3. Selected Points for Training Surrogate Models to Predict Funda-
mental Frequency 

2
 

throughout the space. Figure  5.4 shows the points used for testing the accuracy of surrogate

models.
2Source: González and Zapico[ 70 ]
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Figure 5.4. Testing Data Points for Fundamental Frequency

5.2 High-Fidelity Model

Once the points are selected, the next step is to generate high-fidelity data at these points

and form input-output pairs on which the surrogate models can be trained and tested. The

details regarding the generation of high-fidelity data are provided in this section. The vali-

dated Abaqus model is used to obtain the high-fidelity values of the fundamental frequency

of the structure. Since all three of the Abaqus models are more or less the same until the

second step and provide similar results, any of these models can be used. In this thesis,

the 2D-Nonlinear Abaqus model described in Chapter  4 is used to generate high-fidelity

fundamental frequency values.

In Abaqus, the natural frequencies of a structure can be obtained using the Frequency

step which uses eigenvalue analysis to obtain the frequencies of interest. There are different

solvers for eigenvalue analysis, and in this study, the default Lanczos solver is used. The

computational time for the extraction of natural frequencies of a structure using Abaqus is

not as high as when obtaining the responses of a structure to ground motions by conducting

time-history analyses, and the running 2D-Nonlinear Abaqus model to generate fundamental

frequency values takes about a minute on average per sample point.
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5.3 Data-Driven Surrogate Techniques

The regression learner app in MATLAB is used to train different types of data-driven

models for the prediction of the fundamental frequency of the structure. Since the value

of the fundamental frequency depends on both Young’s Modulus and the Density of Steel,

these two parameters are taken as predictor variables that are input to the surrogate models,

with the fundamental frequency being the sole output of interest. Bayesian optimization[ 78 ]

option that is available in the regression learner app is used for the automatic tuning of

hyper-parameters of the models to obtain the model with the best accuracy and fit. From

trial and error, 200 iterations of Bayesian optimization are determined to be ideal to obtain

the best hyper-parameters. It is found that using a lower number of iterations did not allow

for sufficient convergence of the error during optimization and allowing a higher number

of iterations often did not result in significant improvements. The option to standardize

data is present in the regression learner app, and this option is kept on for all surrogate

models. Four types of data-driven modeling techniques are used to obtain a surrogate model

for the prediction of frequency: 1) Support Vector Machines (SVM), 2) Gaussian Process

Regression (GPR), 3) Artificial Neural Networks (ANN), and 4) Linear Regression. 3-fold

cross-validation is used to validate the model while using all of the 9 points in training and

the 25 points testing set is used to test the accuracy and fit of prediction.

5.3.1 Results

The results using the set of 9 points in training and the set of 25 points in testing are

shown in Table  5.1 . This table lists the RMSE and R2 values in validation and testing for

the most accurate and best-fit data-driven models of each type. Table  5.2 lists the most

accurate data-driven method that is developed along with the ideal hyperparameters tuned

using Bayesian optimization.

Figure  5.5 shows the performance of the SVM model in validation and testing by plotting

the predicted values of fundamental frequency against the actual values.
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Table 5.1. Performance of Data-Driven Models for Fundamental Frequency Prediction

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.0222 0.99 0.0013 0.999
GPR 0.0508 0.93 0.0107 0.94
ANN 0.0520 0.93 0.0045 0.991

Linear Regression 0.0469 0.94 0.0102 0.95

Table 5.2. Best Data-Driven Surrogate Trained for Fundamental Frequency

Model Box Constraint Kernel Scale Epsilon Kernel Function
SVM 654.8406 18.8175 2.8425-4 Gaussian

(a) Predicted vs Actual Values of Fun-
damental Frequency in Validation for
the Best Data-Driven Surrogate

(b) Predicted vs Actual Values of Fun-
damental Frequency in Testing for the
Best Data-Driven Surrogate

Figure 5.5. Performance of the Best Data-Driven Surrogate Model for Fun-
damental Frequency

5.3.2 Discussion

Table  5.1 shows that a data-driven surrogate model with great accuracy and fit is obtained

using just 9 points in training. In fact, with the SVM model, an NRMSE of 0.0013 and an R2

value of nearly 1 is obtained. It can be seen in Figure  5.5b that the prediction error is very
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small, if not negligible. This shows that, as expected it is easy to predict the fundamental

frequency of a structure with variation in its structural properties.

Given that generating the high-fidelity data for fundamental frequency using the 2D-

Nonlinear Abaqus model requires on average 1 minute per sample point, the initial cost

to generate points to train the data-driven surrogate is about 9 minutes plus the time to

obtain the best hyperparameters, which is about 3 minutes on average. Therefore, an initial

cost of about 12 minutes is required to build this data-driven surrogate. However, once the

surrogate model has been developed it can be used to obtain the fundamental frequencies at

all other points in the parameter space at virtually no computational expense. Therefore,

if the fundamental frequency has to be evaluated for a lot of different values of structural

properties, then first training a surrogate model like this one and then using it will be more

effective than using Abaqus for each configuration.

It is worth noting that the performance of the surrogate models is better in testing than

in training as seen in Table  5.1 . This is because extreme values are selected by using the

central composite design for training, while the points selected for testing are distributed

according to the assumed distribution of the structural properties. The reason for using this

approach in training is to ensure that the model does not have to extrapolate when making

predictions, as statistical models usually have high errors when extrapolating.

5.3.3 Physics-Based Surrogate Techniques

A low-fidelity physics-based analytical model can be obtained by assuming that the build-

ing behaves as a shear building with lumped masses. There are multiple ways to map the

results obtained from the high-fidelity model to the high-fidelity fundamental frequency val-

ues; this can be done using various types of machine learning techniques or can be done

manually using analytical equations. In this study, the second approach is used. Usually

when building a lumped mass, shear building model, the mass of the columns is ignored and

it is assumed that all of the structure’s mass is concentrated in the floor slabs. Similarly,

it is assumed that all of the stiffness of the structure is provided by the columns only and

the contribution of the floor slabs to the overall stiffness is ignored. This helps transform
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a continuous structure into a discrete model with a significantly lower number of degrees

of freedom. The natural frequencies of this model are easily obtained by solving the char-

acteristic eigenvalue problem of the model numerically, by inverting the mass matrix using

Gaussian elimination and multiplying the inverse of this with the stiffness matrix. In this

study, the low-fidelity results are matched to the high-fidelity data points by augmenting the

mass matrix to include a part of the mass of the columns. This is done manually as shown

in Equation  5.1 

Mi,i = Mfloor i + factor ∗ (Mhalf single column above floor i + Mhalf single column below floor i)

∀i = 1 : number of floors
(5.1)

which reduces to

Mi,i = Mfloor + factor ∗ (Msingle column) ∀i = 1 : 15 (5.2)

due to the selection of a regular building. High-fidelity data points are used to solve for the

factor in  5.2 . This factor can be chosen to be a function of Young’s Modulus and Density of

steel. However, in this study, it is found that a constant value is enough for an exact match

in the predicted fundamental frequency up to 4 decimal values.

5.3.4 Results

The value of the factor in Equation  5.2 can be found in several ways, including regression.

In this study, however, a trial and error method is used. It is found that a constant value

of 7.05 is enough to get an exact match with the high-fidelity values of the fundamental

frequency at every point.

Since this is an analytical method, there is no training for the model here. Therefore,

all of the 9 selected points using central composite design are used for validation. The same

25 points set is used for testing the model. The performance metrics for this system are

provided in Table  5.3 .
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Table 5.3. Performance of Physics-Based Surrogate Model for Fundamental Frequency

Validation NRMSE Validation R2 Testing NRMSE Testing R2

7.0857*10-10 1.00 8.0321*10-10 1.00

Figure  5.6 shows the performance of the physics-based surrogate model in validation and

testing by plotting the predicted values of fundamental frequency against the actual values.

(a) Predicted vs Actual Values of Fun-
damental Frequency in Validation for
the Physics-Based Surrogate Model

(b) Predicted vs Actual Values of Fun-
damental Frequency in Testing for the
Physics-Based Surrogate Model

Figure 5.6. Performance of the Physics-Based Surrogate Model for Funda-
mental Frequency

5.3.5 Discussion

The results show that by using the value of 7.05 in Equation  5.2 , an exact match is

obtained in the predicted and actual values of fundamental frequencies for this structure.

The analytical model computes the fundamental frequencies almost instantly once the value

of the factor is determined. In this study, since trial and error were used to determine the

value of this factor, it is difficult to determine the time required to find the value of the

factor. However, if some sort of regression was used to obtain the value of the factor, we

can expect a similar time to develop the physics-based surrogate model as was required to

develop the data-driven surrogate models in Section  5.3 . Therefore, as with the data-driven
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surrogate model, when the fundamental frequency of the structure has to be computed for

many different configurations, the time required using the physics-based surrogate model is

significantly lower than the time required to generate the same amount of data using the

high-fidelity 2D-Nonlinear Abaqus model.

5.4 Findings

The findings from the study for the prediction of fundamental frequency for the selected

building using surrogate models are listed below:

• A central composite design with 9 training points was enough to develop data-driven

surrogate models with NRMSE of less than 0.5 and R2 of over 0.95 in both training

and testing.

• The predictions of fundamental frequency from the physics-based surrogate model,

developed using the shear building assumption followed by modification of the mass

matrix to account for the mass of the columns, match the high-fidelity fundamental

frequency values up to four decimal places.

5.5 Conclusions

As expected both data-driven and physics-based surrogate models can be easily developed

to predict the fundamental frequency of the structure for changing values of density and

Young’s modulus of steel with great accuracy.

For both the data-driven and the physics-based models, the prediction process involves

just solving a system of equations. They both require almost no time to make predictions.

However, an advantage of the physics-based model over the data-driven surrogate model it is

easier to understand the prediction process for the physics-based model because it is based on

an analytical simplification of the problem at hand, unlike the data-driven model which is a

black box with the best hyperparameters which are fairly random, determined by Bayesian

optimization. Furthermore, if the factor is known, the time to develop the physics-based

surrogate model is less than the initial time required to train the data-driven model.
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Another advantage of the physics-based surrogate model is that the lessons from this

problem can be applied to other structures as well. However, the data-driven model with

the same hyperparameters cannot directly be applied to other structures, making this type

of model more specific to the problem at hand. The data-driven surrogate model can make

accurate predictions only for this particular building with the selected structural properties

varying inside the selected range. One potential disadvantage of the physics-based model is

that it could be difficult to build simple analytical models for structures with higher levels

of complexity. However, in such cases, one could expect to require more points to train the

data-driven models to obtain satisfactory performance as well.
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6. PEAK STRUCTURAL RESPONSES

It is usually the practice in seismic engineering to determine certain peak structural responses

to given ground motions and determine the state of the building by comparing these values

to predefined limit values of the corresponding parameters[ 6 ]. Some of the common response

parameters of interest are the maximum roof drift ratio, the maximum story drift ratio, and

the maximum acceleration experienced by the structure.

In this study, surrogate models are developed to predict the maximum roof drift ratio

(MRDR) and the maximum story drift ratio (MSDR) of the structure under consideration

for various ground motions. The maximum roof drift ratio is the ratio of the maximum

displacement experienced by the roof of a structure with the overall height of the structure.

The maximum story drift ratio measures the maximum value of the ratio of the displacement

experienced by any floor with respect to its adjacent floor with the height of the corresponding

story enclosed by these floors.

In fragility analysis, the amount of structural damage that a building undergoes is usually

defined as a function of either the maximum roof drift ratio or the maximum story drift ratio,

while the amount of damage to non-structural components can be divided into two parts, one

that is proportional to the overall drift, and another that is proportional to the maximum

acceleration experienced by the structure.

Since these parameters are responses of the structure to ground motions, the values of

these parameters vary with both the structural properties as well as the ground motion

characteristics. Since the ground motions are fairly random, developing surrogate models

to obtain the values of these responses is a challenging task. Furthermore, nonlinearities in

the problem add to the complexity of predicting these response parameters. Therefore, one

can expect to require a higher number of high-fidelity data points to train an acceptable

surrogate model to predict these values as compared to the prediction of the fundamental

frequency of the structure that is presented in the previous chapter.

Section  6.1 provides the details about the data-driven surrogate models developed in

this study, while Section  6.3 provides the information regarding the physics-based models
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developed in this study for the prediction of these maximum structural responses. Following

this, Section  6.4 compares the two types of models and draws conclusions based on the study.

6.1 Data-Driven Surrogate Techniques

Owing to the complexity of the problem, the study to develop data-driven surrogate

models for determining these peak structural responses is divided into multiple sub-studies.

The complexity of the problem is reduced in the initial studies, to begin with, and slowly

added in later studies as more information is gathered about the system. Each of these

sub-studies answers a particular set of questions, providing key learning that is used in the

subsequent studies.

To start with, two preliminary studies are conducted using high-fidelity data from lin-

earized models to get an approximate measure of the number of high-fidelity data points

needed and figure out which predictors capture the response and its variations accurately.

This is done in the interest of saving time by using linear models instead of complex nonlin-

ear models. Findings from these preliminary studies are used to set up the method for the

problem for the study with the actual nonlinear model.

Each subsection in this section is divided into 5 more subsections. First, information

regarding the design of experiments is provided. This is followed by a section providing the

details of the model selected for generating high-fidelity data. Following that, information

regarding the surrogate models that are developed for the corresponding substudy is pro-

vided. Following that, key results are provided and finally, the findings from each of these

studies are listed.

6.1.1 Preliminary Study 1: Same Building Scenario

For the first preliminary study, the properties of the building are kept the same and only

the ground motions are varied. The objective of this preliminary study is to answer the

following questions:

1. Which ground motion parameters capture the trend in peak structural responses the

best?
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2. Which of the 2 peak structural responses is easier to predict?

3. How many high-fidelity data points are required for training the data-driven models

to obtain acceptable performance?

Design of Experiments

Since structural properties are kept constant at the mean value for this study, just the

ground motion records need to be changed. 125 real ground motions are selected from

different ground motion databases as described in  3.4 . These ground motions are randomly

shuffled to reduce bias in training sets.

25 ground records are kept aside for testing the surrogate models. Out of the remaining

100 records, 25 are chosen for the initial training process. Surrogate models are trained using

this initial set and the performance in training and testing is checked. If no surrogate models

satisfy the required accuracy or fit, 25 more ground records are added to the training set

to increase the number of ground records to 50. The process is repeated until 100 ground

motions are reached in training or a model with a satisfactory level of accuracy in both

validation and testing is obtained.

This cycle is repeated for different combinations of input parameters for both the pre-

diction of MRDR and MSDR.

High-Fidelity Model

As mentioned above, a linearized model is used to obtain high-fidelity data for this

preliminary study. This is done to reduce the computational time required to obtain high-

fidelity data for the study. Since we do not need exact answers yet and will be building

upon the learning from this study in a more complete study with the fully nonlinear high-

fidelity model, this approximation is acceptable. It is important to however remember the

assumptions made when making these simplifications, the most important one being that

non-linearities are ignored.

For this preliminary study, the responses generated using the fundamental frequency

matched shear building model, developed in  5.3.3 is assumed to be the pseudo-high-fidelity
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data. The peak structural responses from this model are obtained by first obtaining the

time-history response of the shear building using numerical integration (using ODE45 in

MATLAB [  79 ]) and then determining the maximum value of the response.

Data-Driven Modeling Techniques

As was the case when predicting fundamental frequencies, the MATLAB regression

learner app is used to build data-driven surrogate models. Again 4 types of modeling

techniques are tried: 1) Support Vector Machines (SVM), 2) Gaussian Process Regression

(GPR), 3) Artificial Neural Networks (ANN), and 4) Linear Regression (LR). Bayesian op-

timization[ 78 ] with 200 iterations is used to tune the hyperparameters of the models.

Multiple different parameters capture various characteristics of the ground motions as

listed in past literature 2 . Since ground motions are highly complex and nonlinear, it is also

true that just a single parameter cannot capture all the characteristics of the ground motions.

This is why some authors have used multiple predictor variables when developing fragility

curves[ 37 ], [  38 ].

Since the main objective of this preliminary study is to understand which parameter/set

of parameters provides the most accurate surrogate models, different parameters and their

combinations are tried as predictor variables to the surrogate models in this study. Two

types of parameters are used as predictor parameters:

1. Peak-based Values: Peak ground acceleration. This value just captures the maximum

ground acceleration and does not capture any information regarding the frequency

content or the duration of ground motion excitation.

2. Frequency-based values: spectral response properties (spectral acceleration, spectral

velocity, and spectral displacement) capture the frequency content of a ground mo-

tion. For this study, the spectral response properties are obtained using the numerical

response of an equivalent Single Degree of Freedom (SDOF) system. An equivalent

single-degree-of-freedom system is a single-degree-of-freedom system with the same fun-

damental frequency and the fundamental mode damping ratio as the actual structure.

The spectral response properties are the maximum responses (absolute acceleration,
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relative velocity, and relative displacement) of this equivalent SDOF. The response can

be obtained by numerically conducting a time-history analysis of the SDOF and noting

the peak values. ODE45 in MATLAB is used to numerically solve the equations of

motions for the SDOF in this study. The computational time to do this is 25 seconds

on average.

Since the equivalent SDOF is usually created to have the same fundamental frequency

as that of the actual structure, the spectral response properties depend on both the

structural properties (because the fundamental frequency varies with the structural

properties) as well as the ground motion characteristics. However, for this preliminary

study, since we are keeping the structural properties constant, the fundamental fre-

quency of the equivalent SDOF remains constant and the spectral response properties

just vary with the ground motion properties.

5-fold cross-validation is used to validate the model while using all of the points in training

and the 25 points testing set is used to test the accuracy and fit of prediction. The results

from this study are used to understand which set of predictor parameters provides the most

accurate results when predicting the respective peak responses.

Results

Results from different combinations of input parameters to the data-driven surrogate

model for this preliminary study are provided in Appendix  A . The results of the hyperpa-

rameters for the best model obtained are fairly random and hence are thus not provided.

Table  6.1 provides a summary of the performance of the best models for each combination

of input parameters along with the corresponding number of training data points required

for the prediction of maximum roof drift ratio.

Table  6.2 provides a summary of the performance of the best models for each combination

of input parameters along with the corresponding number of training data points required

for the prediction of maximum story drift ratio.
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Table 6.1. Data-Driven Model Results: Same Building - Maximum Roof Drift Ratio

Inputs Points Best Validation Validation Testing Testing
Parameters Required Model NRMSE R2 NRMSE R2

PGA 100 ANN 1.72 0.32 1.85 0.43
Sa 25 ANN 0.23 0.995 0.34 0.98
Sv 100 GPR 0.49 0.94 0.47 0.96
Sd 25 SVM 0.18 0.997 0.34 0.98

PGA, Sa 25 GPR 0.16 0.997 0.14 0.997
PGA, Sv 75 SVM 0.48 0.96 0.38 0.98
PGA, Sd 25 SVM 0.13 0.998 0.22 0.99

Sa, Sv 25 ANN 0.12 0.999 0.25 0.99
Sa, Sd 25 LR 0.24 0.994 0.32 0.98
Sv, Sd 25 GPR 0.14 0.998 0.20 0.99

PGA, Sa, Sv 25 SVM 0.31 0.99 0.29 0.99
PGA, Sa, Sd 25 LR 0.22 0.996 0.19 0.99
PGA, Sv, Sd 25 ANN 0.14 0.998 0.28 0.99

Sa, Sv, Sd 25 ANN 0.11 0.999 0.25 0.99
PGA, Sa, Sv, Sd 25 SVM 0.13 0.998 0.29 0.99

Table 6.2. Data-Driven Model Results: Same Building - Maximum story Drift Ratio

Inputs Points Best Validation Validation Testing Testing
Parameters Required Model NRMSE R2 NRMSE R2

PGA 100 GPR 1.18 0.55 1.09 0.77
Sa 100 ANN 0.55 0.90 1.05 0.79
Sv 100 ANN 0.39 0.95 0.62 0.93
Sd 100 GPR 0.56 0.90 0.99 0.81

PGA, Sa 100 LR 0.36 0.96 0.30 0.95
PGA, Sv 100 ANN 0.31 0.97 0.58 0.94
PGA, Sd 50 ANN 0.33 0.97 0.50 0.95

Sa, Sv 25 SVM 0.26 0.99 0.40 0.97
Sa, Sd 100 LR 0.46 0.94 0.81 0.87
Sv, Sd 25 SVM 0.29 0.99 0.45 0.96

PGA, Sa, Sv 100 ANN 0.33 0.97 0.53 0.95
PGA, Sa, Sd 100 ANN 0.34 0.96 0.55 0.94
PGA, Sv, Sd 50 GPR 0.32 0.97 0.50 0.95

Sa, Sv, Sd 25 SVM 0.42 0.97 0.35 0.98
PGA, Sa, Sv, Sd 50 ANN 0.30 0.98 0.50 0.95
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Discussion

The first thing worth noting is that just PGA by itself is not a good predictor variable for

the prediction of either maximum roof drift ratio or maximum story drift ratio. Although

PGA does have some correlation with both these peak responses (the R2 value is not 0),

it does not correlate well enough with either response to satisfy the target performance

metrics. Figure  6.1 shows the scatter on using 100 training points with PGA as the sole

input parameter to predict the maximum roof drift and story drift ratios.

(a) Scatter in Validation of MRDR with
Input: PGA

(b) Scatter in Validation of MSDR with
Input: PGA

Figure 6.1. Scatter in Validation of Peak Structural Responses with Input:
PGA for 100 Training Points

Furthermore, increasing the number of points does not significantly decrease the error in

validation or testing when using PGA as the only input parameter for the surrogate model.

This is shown in Figure  6.2 . This suggests that just the PGA of ground motions does not

capture the variation in peak responses well enough. This finding is expected because PGA

does not capture the frequency content of the ground motions.

Among the remaining input parameters for the prediction of the maximum roof drift

ratio, it is seen that both spectral acceleration and spectral displacement provide surrogate

models that satisfy the performance criteria. Spectral displacement as the predictor provides
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(a) Best Testing Performance for Pre-
diction of MRDR for Input: PGA

(b) Best Testing Performance for Pre-
diction of MSDR for Input: PGA

Figure 6.2. Performance Metrics for the Best Data-Driven Models for Pre-
dicting Peak Responses for Input: PGA

the best performance of the developed surrogate model. There could be several explanations

for this behavior. To start with, spectral displacement measures the maximum displacement

of a single story structure and therefore has a good correlation with the maximum roof drift

ratio. Another reason could be that the structural response for this structure falls in the

constant displacement region of the response spectrum.

As expected, the prediction becomes more accurate when more than one parameter is

used as input parameters. It is seen that combining PGA with any of the spectral parame-

ters results in a surrogate model with performance better than any single parameter input

surrogate model. Therefore, while PGA by itself does not capture the characteristics of the

ground motion, when it is used along with any spectral response property, the trend in the

maximum roof drift ratio is captured very well. This confirms the findings from Pena et.

al. [  37 ]. Similarly, using any two spectral response properties together as the inputs to

surrogate models also results in surrogate models with satisfactory performance. The same

trend is seen as any three or all four of the input parameters are used together as inputs to

the surrogate model.

The results for the prediction of the maximum story drift ratio are not as straightforward

as that for the prediction of the maximum roof drift ratio. It is seen that among the

remaining input parameters, the spectral velocity is the best parameter to use as input to
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the surrogate models used for the prediction. However, using just the spectral velocity as

the input parameter did not result in a surrogate model with satisfactory performance even

with 100 training points.

As seen for the prediction of the maximum roof drift ratio, the prediction of the maximum

story drift ratio also becomes more accurate when more than one parameter is used as input

parameters. Using the spectral velocity with either or both of the remaining spectral response

properties resulted in surrogate models with satisfactory performance with just 25 training

data points.

Findings

This subsection lists the findings from the first preliminary study where we used pseudo-

high-fidelity data and neglected the randomness in structural properties.

• Using PGA alone as a predictor causes large errors in the prediction of peak structural

responses.

• Spectral displacement is the best predictor for the prediction of the maximum roof

drift ratio.

• Spectral velocity is the best predictor for the prediction of the maximum story drift

ratio.

• The prediction of maximum roof drift ratio is easier than the prediction of maximum

story drift ratio.

• 25 points in training are sufficient to get good predictions of maximum roof drift ratio

for most combinations of input parameters.

• For the prediction of maximum story drift ratio, anywhere from 25 to more than 100

points are required in training based on the combinations of input parameters.

98



6.1.2 Preliminary Study 2: Linearized Fixed Base Scenario

After determining the best predictor sets in the previous preliminary study, the next

question to be answered is how the number of high-fidelity data points required increases

when the structural properties of the building are also varied. Therefore, in this preliminary

study, both the structural properties as well as the ground motions are varied and the

learning from previous preliminary studies is applied to develop surrogate models which

provide accurate predictions throughout the range of the parametric space.

The objective of this preliminary study is to answer the following questions:

1. What is the increase in the number of high-fidelity data points required for training

the data-driven surrogate models as the structural properties are also varied?

2. Which parameters capture the properties of the structure as well as the ground motion

characteristics well enough to be used as predictors in data-driven surrogate models?

3. How does the variation in structural properties affect the response when compared

to the variation in ground motion characteristics? (Is it necessary to consider the

randomness in structural properties?)

Design of Experiments

Latin hypercube sampling (LHS)[ 80 ] is used to sample the values of structural properties

(Young’s Modulus and Density of Steel) at which high-fidelity data is to be collected. Using

LHS reduces the total number of high-fidelity data points required by selecting points ran-

domly based on the cumulative density function of the parametric space. MATLAB function

lhsnorm is used to obtain the points[ 81 ]. This function is selected because it is assumed that

both Young’s Modulus and the Density of Steel are normally distributed. When generating

the points, it is assumed that the covariance between Young’s Modulus and the Density of

Steel is zero. This follows what has been traditionally used in literature when the exact

covariance of two structural properties is unknown[ 19 ].

The ground motion records are randomly shuffled to reduce any biases. 25 of these

ground motions are kept aside for the training set. With the remaining 100 ground records,
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four training sets with an increasing number of training points are created. The first set has

25 data points, the second has 50, the third has 75 and the fourth one has 100 data points.

These sets have been named Set 25 through 100 respectively. Latin hypercube sampling

is run separately for each of these sets ensuring that different sets have different values of

Young’s Modulus and density of steel. Figures  6.3 and  6.4 show the points sampled for each

of these sets on the respective distribution. Figure  6.5 shows the points sampled for the

testing data set. Figures  6.6 and  6.7 show the values of peak ground accelerations of ground

motions selected for training and testing respectively.

Figure 6.3. Steel Density Points for Different Training Sets

Figure 6.4. Young’s Modulus Points for Different Training Sets
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(a) Steel Density Points:
Testing Set

(b) Young’s Modulus Points:
Testing Set

Figure 6.5. Sampled Points for Testing Set

Figure 6.6. Peak Ground Accelerations of Earthquakes Sampled for Training

High-Fidelity Model

Once again, for this preliminary study, the responses generated using the fundamental

frequency matched shear building model, developed in  5.3.3 is assumed to be the pseudo-

high-fidelity data. The peak structural responses from this model are obtained by first

obtaining the time-history response of the shear building using numerical integration (using

ODE45 in MATLAB) and then determining the maximum value of the response.
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Figure 6.7. Peak Ground Accelerations of Earthquakes Sampled for Testing

Data-Driven Modeling Techniques

Similar to the previous preliminary study 4 data-driven options are tried out using MAT-

LAB’s regression learner app: 1) Support Vector Machines (SVM), 2) Gaussian Process

Regression (GPR), 3) Artificial Neural Networks (ANN), and 4) Linear Regression (LR).

Bayesian optimization with 200 iterations is used to tune the hyperparameters. 5-fold cross-

validation is used to validate the model while using all of the points in training and the 25

points testing set is used to test the accuracy and fit of prediction.

In this preliminary study, however, only the set of predictors that performed well in the

previous study are used. The two structural properties (Young’s modulus and the density of

steel) are also used as predictors in the surrogate model along with the selected ground motion

parameters. One important consideration here is that the spectral response properties vary

with both the structural properties as well as the ground motion characteristics. Therefore

there are two options here:

1. Using the spectral response property at the mean values of the structural properties

as used in the previous study. Here the spectral response properties do not capture

the variation in structural properties. However, this variation is captured by the peak

responses and can be provided to the surrogate models by providing Young’s modulus
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and the density of steel as input parameters if required. The flowchart for this surrogate

model is shown in Figure  6.8 .

Figure 6.8. Flowchart of the Structure of the Surrogate Models for the Predic-
tions of Peak Structural Responses Using Mean Spectral Response Properties

2. Using the actual spectral response properties by considering the variation of structural

properties. This would require estimating the fundamental frequency of the structure

first and then creating an SDOF system with this as its natural frequency. The surro-

gate model for the prediction of frequency that was developed in  5.3.3 is used for the

first step. This option is viable since these surrogate models predict the frequencies

exactly up to 4 decimal points and at a fast computational speed. The flowchart for

this surrogate model is shown in Figure  6.9 .

A sensitivity study is conducted to see if the second option described above would be

required. For 30 of the 125 ground records, the frequency is varied within the range of interest

and the spectral response properties are calculated at each of these frequency values. The

coefficient of variation is measured for each of the spectral response properties, for each

ground motion and is used to determine if the second option needs to be considered.

Figures  6.10 ,  6.11 , and  6.12 show the variation of spectral acceleration, spectral velocity,

and spectral displacement respectively of the structure at various frequencies for 30 ground
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Figure 6.9. Flowchart of the Structure of the Surrogate Models for the Predic-
tions of Peak Structural Responses Using Actual Spectral Response Properties

motions. The spectral velocity and spectral displacement plotted here are obtained using an

equivalent SDOF system of the scaled model and hence these values are inherently scaled in

a similar manner. Figure  6.13 shows the coefficients of variations against the fundamental

frequency for different earthquakes. These plots show a moderate variation in spectral re-

sponse properties as the fundamental frequency of the structure is changed within the range

of sampled structural properties. This variation is different for different earthquake records

as well. Therefore, it is worth studying the differences in determining the actual spectral

response properties and using that as inputs to surrogate models against using the spectral

response properties at mean structural properties as the inputs to surrogate models.

Results

The results for individual models for various combinations of input parameters for pre-

dicting maximum roof drift ratio and maximum story drift ratio for preliminary study 2 are

provided in Appendix  B and  C . Appendix  B lists the results when using actual spectral
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Figure 6.10. Spectral Acceleration vs Fundamental Frequency

Figure 6.11. Spectral Velocity vs Fundamental Frequency

response properties as inputs, while Appendix  C lists the results when using mean spectral

response properties.

A summary of these results, listing the best models for each combination of input pa-

rameters, is provided in Tables  6.3 to  6.6 .
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Figure 6.12. Spectral Displacement vs Fundamental Frequency

(a) Coefficients of Variation
of Spectral Acceleration with
Frequency for 30 Earthquakes

(b) Coefficients of Variation
of Spectral Velocity with Fre-
quency for 30 Earthquakes

(c) Coefficients of Variation
of Spectral Displacement with
Frequency for 30 Earthquakes

Figure 6.13. Coefficients of Variation of Spectral Response Properties with
Fundamental Frequency for 30 Earthquakes

Discussion

The following is the discussion of the results obtained for the prediction of maximum

roof drift ratio using data-driven surrogate in preliminary study 2 with linear high-fidelity

data and randomness in structural properties.

• When using actual spectral parameters as inputs, there was no significant difference

in performance by providing structural properties as inputs to the surrogate models
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Table 6.3. Data-Driven Model Results: Varying Structural Properties - Max-
imum Roof Drift Ratio - Actual Spectral Response Properties

Inputs Points Best Val Val Test Test
Parameters Req Model NRMSE R2 NRMSE R2

Sa act 50 LR 0.40 0.97 0.43 0.95
E, ρ, Sa act 50 SVM 0.19 0.99 0.32 0.97

Sd act 25 LR 0.23 0.99 0.39 0.96
E, ρ, Sd act 25 GPR 0.24 0.99 0.48 0.95
PGA, Sa act 100 LR 0.09 0.98 0.57 0.95

E, ρ, PGA, Sa act 50 ANN 0.27 0.98 0.39 0.96
PGA, Sd act 25 LR 0.18 0.99 0.35 0.97

E, ρ, PGA, Sd act 25 LR 0.19 0.99 0.33 0.97
Sa act, Sv act 50 GPR 0.19 0.99 0.39 0.96

E, ρ, Sa act, Sv act 50 LR 0.20 0.99 0.23 0.99
Sa act, Sd act 25 LR 0.21 0.99 0.33 0.97

E, ρ, Sa act, Sd act 25 LR 0.27 0.98 0.37 0.97
Sv act, Sd act 25 LR 0.24 0.99 0.33 0.97

E, ρ, Sv act, Sd act 25 LR 0.19 0.99 0.25 0.99
PGA, Sa act, Sv act 50 LR 0.31 0.98 0.42 0.96

E, ρ, PGA, Sa act, Sv act 50 LR 0.29 0.98 0.33 0.98
PGA, Sa act, Sd act 25 LR 0.15 0.995 0.36 0.97

E, ρ, PGA, Sa act, Sd act 25 LR 0.18 0.995 0.36 0.97
PGA, Sv act, Sd act 25 LR 0.21 0.99 0.32 0.98

E, ρ, PGA, Sv act, Sd act 25 LR 0.27 0.98 0.26 0.98
Sa act, Sv act, Sd act 25 LR 0.25 0.98 0.26 0.98

E, ρ, Sa act, Sv act, Sd act 25 LR 0.21 0.99 0.32 0.98
PGA, Sa act, Sv act, Sd act 25 LR 0.21 0.99 0.35 0.97

E, ρ, PGA, Sa act,
Sv act, Sd act 25 LR 0.20 0.99 0.36 0.97

in addition to the ground motion parameters as compared to when the structural

properties were not provided as inputs. Figure  6.14 shows the testing NRMSE values

for the prediction of maximum roof drift ratio using surrogate models with and without

structural properties as inputs alongside actual spectral response properties.

This could mean two things: 1) the spectral parameters used as inputs capture the

changes in structural properties, therefore providing structural properties as inputs

adds no extra information, or 2) randomness in structural inputs does not have a
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Table 6.4. Data-Driven Model Results: Varying Structural Properties - Max-
imum Roof Drift Ratio - Mean Spectral Response Properties

Inputs Points Best Val Val Test Test
Parameters Req Model NRMSE R2 NRMSE R2

Sa 25 LR 0.45 0.95 0.30 0.98
E, ρ, Sa 50 LR 0.43 0.95 0.31 0.98

Sd 25 GPR 0.39 0.97 0.25 0.99
E, ρ, Sd 25 LR 0.39 0.96 0.31 0.98
PGA, Sa 25 SVM 0.10 0.998 0.20 0.99

E, ρ, PGA, Sa 25 SVM 0.27 0.98 0.30 0.98
PGA, Sd 25 ANN 0.25 0.99 0.22 0.99

E, ρ, PGA, Sd 25 LR 0.28 0.98 0.30 0.98
Sa, Sv 25 LR 0.32 0.98 0.32 0.98

E, ρ, Sa, Sv 25 LR 0.32 0.97 0.32 0.98
Sa, Sd 25 LR 0.38 0.98 0.35 0.97

E, ρ, Sa, Sd 25 ANN 0.29 0.98 0.31 0.98
Sv, Sd 25 ANN 0.46 0.95 0.24 0.99

E, ρ, Sv, Sd 25 LR 0.32 0.98 0.32 0.98
PGA, Sa, Sv 25 LR 0.30 0.98 0.29 0.98

E, ρ, PGA, Sa, Sv 25 GPR 0.25 0.99 0.26 0.98
PGA, Sa, Sd 25 SVM 0.23 0.99 0.20 0.99

E, ρ, PGA, Sa, Sd 25 LR 0.31 0.98 0.29 0.98
PGA, Sv, Sd 25 LR 0.19 0.99 0.33 0.98

E, ρ, PGA, Sv, Sd 25 LR 0.31 0.98 0.29 0.98
Sa, Sv, Sd 25 ANN 0.40 0.96 0.25 0.99

E, ρ, Sa, Sv, Sd 25 LR 0.39 0.96 0.29 0.98
PGA, Sa, Sv, Sd 25 ANN 0.32 0.98 0.25 0.99

E, ρ, PGA, Sa, Sv, Sd 25 SVM 0.28 0.98 0.34 0.97

significant effect on the maximum roof drift ratio and therefore, the surrogate models

developed without structural properties as inputs can make similar predictions as the

ones with structural properties as inputs.

• Similar observation was seen when using mean spectral parameters as inputs. Here,

since mean structural properties are being used, they for sure do not capture the

randomness in structural properties. Therefore, it can be concluded that the random-

ness in structural properties does not affect the maximum roof drift ratio significantly
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Table 6.5. Data-Driven Model Results: Varying Structural Properties - Max-
imum story Drift Ratio - Actual Spectral Response Properties

Inputs Points Best Val Val Test Test
Parameters Req Model NRMSE R2 NRMSE R2

Sa act, Sv act 100 ANN 0.47 0.94 0.80 0.91
E, ρ, Sa act, Sv act 100 GPR 0.40 0.96 0.82 0.88

Sv act, Sd act 100 ANN 0.33 0.97 0.46 0.96
E, ρ, Sv act, Sd act 100 ANN 0.41 0.96 0.56 0.90
PGA, Sv act, Sd act 100 ANN 0.28 0.98 0.73 0.90

E, ρ, PGA, Sv act, Sd act 100 SVM 0.29 0.98 0.73 0.91
Sa act, Sv act, Sd act 100 ANN 0.41 0.96 0.69 0.92

E, ρ, Sa act, Sv act, Sd act 100 GPR 0.38 0.71 0.84 0.88
PGA, Sa act, Sv act, Sd act 100 SVM 0.24 0.98 0.72 0.91

E, ρ, PGA, Sa act,
Sv act, Sd act 100 ANN 0.29 0.98 0.72 0.91

Table 6.6. Data-Driven Model Results: Varying Structural Properties - Max-
imum story Drift Ratio - Mean Spectral Response Properties

Inputs Points Best Val Val Test Test
Parameters Req Model NRMSE R2 NRMSE R2

Sa, Sv 100 SVM 0.49 0.94 0.78 0.90
E, ρ, Sa, Sv 100 ANN 0.63 0.90 0.89 0.86

Sv, Sd 100 SVM 0.48 0.94 0.72 0.91
E, ρ, Sv, Sd 100 SVM 0.55 0.92 0.74 0.90
PGA, Sv, Sd 100 SVM 0.50 0.94 0.78 0.90

E, ρ, PGA, Sv, Sd 100 GPR 0.37 0.97 0.72 0.91
Sa, Sv, Sd 100 ANN 0.47 0.94 0.69 0.92

E, ρ, Sa, Sv, Sd 100 SVM 0.58 0.91 0.75 0.90
PGA, Sa, Sv, Sd 100 ANN 0.41 0.96 0.74 0.90

E, ρ, PGA, Sa, Sv, Sd 100 ANN 0.21 0.96 0.76 0.90

when compared to randomness in ground motion records. Figure  6.15 shows the test-

ing NRMSE for the prediction of maximum roof drift ratio using surrogate models

with and without structural properties as inputs alongside mean spectral response

properties.
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Figure 6.14. Testing Performance: MRDR: Actual Spectral Response Prop-
erties - With and Without Structural Properties

Figure 6.15. Testing Performance: MRDR: Mean Spectral Response Prop-
erties - With and Without Structural Properties

• Using mean spectral response properties provided similar, if not slightly better perfor-

mance than using actual spectral response properties. This reinforces the conclusion

in the previous point that the randomness in structural properties does not have a

significant enough influence on the maximum roof drift ratio, therefore, not capturing
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this randomness does not result in a reduction in the prediction error. Figure  6.16 

compares the NRMSE in validation and testing for the prediction of maximum roof

drift ratio when using actual spectral response properties to when using mean spectral

response properties.

(a) Validation NRMSE

(b) Testing NRMSE

Figure 6.16. Performance of Data-Driven Surrogate Model: MRDR: Using
Actual Spectral Response Properties vs Using Mean Spectral Response Prop-
erties
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• It is seen that the best predictor for the prediction of the maximum roof drift ratio is

spectral displacement.

• Increasing the number of inputs to the surrogate model while keeping the size of the

training data set the same, reduces the errors in general as expected. This is because

each input parameter captures different features of the ground motion excitation and

the structural response. The only time prediction NRMSE increases on adding another

input to the surrogate model is when PGA is the new input added. This is shown in

Figure  6.17 

Figure 6.17. Testing NRMSE on Increasing the Number of Inputs to the
Data-Driven Surrogate Model Using Actual Spectral Response Properties

• There is virtually no increase in the number of points required when considering the

randomness in structural properties when opposed to not considering this randomness

for the prediction of the maximum roof drift ratio.

• It is seen that linear regression provides the best fit for data in most cases for the

prediction of the maximum roof drift ratio in this study. This is expected because the

high-fidelity data chosen for this preliminary study is linear.

The following is the discussion of the results obtained for the prediction of maximum

story drift ratio using data-driven surrogates in preliminary study 2 with linear high-fidelity

data and randomness in structural properties.

112



• Like was the case for the prediction of maximum roof drift ratio, for the prediction

of maximum story drift ratio too, when using actual spectral parameters as inputs,

there was no significant difference in performance by providing structural properties

as inputs to the surrogate models in addition to the ground motion parameters as

compared to when the structural properties were not provided as inputs. Figure  6.18 

shows the testing NRMSE values for the prediction of the maximum story drift ratio

for surrogate models with and without structural properties as inputs alongside the

actual spectral response properties.

Figure 6.18. Testing Performance: MSDR: Actual Spectral Response Prop-
erties - With and Without Structural Properties

• Similar observation was seen when using mean spectral parameters as inputs. Here,

since mean structural properties are being used, they for sure do not capture the

randomness in structural properties. Therefore, it can be concluded that the random-

ness in structural properties does not affect the maximum roof drift ratio significantly

when compared to randomness in ground motion records. Figure  6.19 shows the test-

ing NRMSE for the prediction of maximum story drift ratio using surrogate models

with and without structural properties as inputs alongside mean spectral response

properties.
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Figure 6.19. Testing Performance: MSDR: Mean Spectral Response Proper-
ties - With and Without Structural Properties

• Using mean spectral response properties provided similar, if not slightly better perfor-

mance than using actual spectral response properties. This reinforces the conclusion

in the previous point that the randomness in structural properties does not have a

significant enough influence on the maximum roof drift ratio, therefore, not capturing

this randomness does not result in a reduction in the prediction error. Figure  6.20 

compares the NRMSE in validation and testing for the prediction of maximum story

drift ratio when using actual spectral response properties to when using mean spectral

response properties.

• The number of points required in training is significantly increased when randomness

in structural properties is incorporated into the problem. In fact, 100 points are not

enough to achieve the target performance.

• Once again, it is seen that it is more difficult to predict the maximum story drift ratio

than to predict the maximum roof drift ratio. This is expected because there is an

additional level of complexity added in the prediction of maximum story drift because

this drift can occur in any story as opposed to the maximum roof drift ratio.
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(a) Validation NRMSE

(b) Testing NRMSE

Figure 6.20. Performance of Data-Driven Surrogate Model: MSDR: Using
Actual Spectral Response Properties vs Using Mean Spectral Response Prop-
erties

• For the prediction of maximum story drift it is observed that linear regression does not

perform as well as other methods used, implying that although the model is linear (or

stepwise linear- by using a lumped mass model, it is assumed that each story deforms
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linearly), there is some level of nonlinearity added to the prediction (probably because

of the multiple different stories at which maximum story drift may occur).

Findings

This subsection lists the findings from the second preliminary study, where we used

pseudo-high-fidelity data while considering randomness in structural properties as well as

ground motions.

The findings for the prediction of the maximum roof drift ratio are:

• For both the prediction of the maximum roof drift ratio as well as the prediction of

the maximum story drift ratio, providing the structural properties along with either

the actual or mean spectral response properties as inputs did not make a significant

difference in the prediction performance.

• Similarly, no appreciable differences in prediction performance was found when us-

ing the actual spectral response properties as inputs vs using mean spectral response

properties as inputs.

• The number of ground motions required for obtaining an accurate surrogate model

remained 25 for the prediction of the maximum roof drift ratio, but it increased sig-

nificantly for the prediction of the maximum story drift ratio.

6.1.3 Full Study

Now that we have completed all the preliminary studies, and have answered the questions

we needed to before generating the actual high-fidelity data, we can finally use the actual

high-fidelity data and generate data-driven models to predict the peak structural responses.

Findings from all the preliminary studies are used for the design of experiments and to select

predictor parameters for the data-driven models.

The main objective of this study is to answer the following question:

1. How many high-fidelity data points are required to train data-driven surrogate models

for the prediction of MRDR and MSDR with acceptable performance?

116



2. What is the increase in the number of points when using actual nonlinear high-fidelity

data from the number of points when using linear pseudo-high-fidelity data?

3. Is the trend regarding the best predictor variables similar when using nonlinear high-

fidelity data as when using linear high-fidelity data?

Design of Experiments

The same points as used for the second preliminary study (subsection  6.1.2 ) are used in

this study. Doing this facilitates a direct comparison between the surrogate models obtained

training on linear pseudo-high-fidelity data to the surrogate models obtained training on

nonlinear high-fidelity data.

Therefore, the lhsnorm function in MATLAB is used to sample the structural properties

using Latin hypercube sampling. 25 ground motions are kept aside for testing. The remaining

ground motions are grouped into four training sets, with the first set having 25 ground

motions and each subsequent set having 25 ground motions more than the previous set. The

number of ground motion sin training set is limited to 100 because the objective of the study

in this thesis is to reduce computational time to obtain estimates of seismic responses and

generating more than 100 points of high-fidelity data is a computationally expensive task in

itself.

High-Fidelity Model

The validated 2D nonlinear Abaqus model presented in Chapter  4 is used to obtain high-

fidelity data for these values. The peak structural responses are obtained by carrying out a

nonlinear dynamic analysis in Abaqus and then finding the maximum value of the responses.

Data-Driven Modeling Techniques

Similar to the preliminary studies, 4 data-driven options are tried out using MATLAB’s

regression learner app: 1) Support Vector Machines (SVM), 2) Gaussian Process Regression

(GPR), 3) Artificial Neural Networks (ANN), and 4) Linear Regression (LR). Bayesian
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optimization with 200 iterations is used to tune the hyperparameters. 5-fold cross-validation

is used to validate the model while using all of the points in training and the 25 points testing

set is used to test the accuracy and fit of prediction.

Findings from the preliminary studies are used to select the right combinations of pre-

dictor parameters for the surrogate models and to estimate the number of points required

in training. In the preliminary studies, it was found that using mean spectral response

properties provided similar results as using actual spectral response properties. It was also

found that providing the structural properties as inputs did not improve the performance of

the surrogate models significantly. Therefore, mean spectral response properties are used as

predictor variables, and structural properties are not provided as inputs.

Results

The results for individual data-driven surrogate models for various combinations of input

parameters for the prediction of the maximum roof drift ratio and the maximum story drift

ratio using actual high-fidelity data are provided in Appendix  D . A summary of these results,

listing the best models for each combination of input parameters, is provided in Table  6.7 

for maximum roof drift ratio and in Table  6.8 for story drift ratio.

6.2 Discussion

The discussions regarding the prediction of maximum roof drift ratio using data-driven

surrogate models for responses generated using actual high-fidelity data and randomness in

both structural properties and ground motions are provided below:

• The number of ground motions required in training to obtain acceptable performance

from surrogate models did not increase from 25 on selecting nonlinear high-fidelity

data over the linear pseudo-high-fidelity data used in the preliminary studies.

• The trend regarding the best predictor variables followed the same trend seen in the

preliminary studies. Spectral displacement is the best intensity measure to condition

the maximum roof drift ratio, followed by spectral acceleration.
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Table 6.7. Data-Driven Model Results: Varying Structural Properties - Max-
imum Roof Drift Ratio

Inputs Points Best Val Val Test Test
Parameters Req Model NRMSE R2 NRMSE R2

Sa mean 25 ANN 0.10 0.998 0.32 0.98
Sd mean 25 ANN 0.11 0.998 0.25 0.99

PGA, Sd mean 25 SVM 0.16 0.99 0.24 0.99
Sa mean, Sd mean 25 LR 0.10 0.998 0.25 0.99

Sa mean, Sv mean, Sd mean 25 GPR 0.18 0.99 0.31 0.98
PGA, Sa mean,
Sv mean, Sd mean 25 SVM 0.09 0.998 0.25 0.99

Sd act 25 ANN 0.12 0.997 0.41 0.96
PGA, Sd act 25 GPR 0.09 0.998 0.38 0.97
Sa act, Sd act 25 SVM 0.30 0.98 0.39 0.96
Sv act, Sd act 25 ANN 0.21 0.99 0.40 0.96

Sa act, Sv act, Sd act 25 LR 0.17 0.99 0.34 0.97
PGA, Sa act, Sv act, Sd act 25 ANN 0.18 0.99 0.5 0.95

Table 6.8. Data-Driven Model Results: Varying Structural Properties - Max-
imum story Drift Ratio

Inputs Points Best Val Val Test Test
Parameters Req Model NRMSE R2 NRMSE R2

Sv mean 100 ANN 0.75 0.86 0.78 0.89
Sa mean, Sv mean 100 ANN 0.75 0.86 0.81 0.88
Sv mean, Sd mean 100 ANN 0.71 0.87 0.76 0.90

PGA, Sv mean, Sd mean 100 SVM 0.53 0.93 0.70 0.91
Sa mean, Sv mean, Sd mean 100 ANN 0.78 0.85 0.58 0.94

PGA, Sa mean,
Sv mean, Sd mean 100 ANN 0.61 0.91 0.75 0.90

Sv actual 100 ANN 0.60 0.91 0.76 0.90
Sa actual, Sv actual 100 SVM 0.58 0.92 0.87 0.86
Sv actual, Sd actual 100 GPR 0.57 0.92 0.82 0.88

PGA, Sv actual, Sd actual 100 SVM 0.34 0.97 1.20 0.74
Sa actual, Sv actual, Sd actual 100 LR 0.66 0.89 0.77 0.89

PGA, Sa actual,
Sv actual, Sd actual 100 SVM 0.44 0.95 1.40 0.65
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• Using mean structural properties provided better performance than using actual spec-

tral response properties. While the surrogate models developed using actual spectral

response properties also provide satisfactory performance, it is seen that there is an

overfit on the training data in these models, thus reducing the accuracy in testing.

Therefore, increasing the number of points in the testing dataset could potentially

change this trend.

The biggest difference between the two approaches is the ability to capture uncer-

tainty in structural properties. When using surrogate models developed from the first

approach with mean spectral response properties, the estimates of the maximum roof

drift ratios will be the same for a given ground motion, irrespective of the structural

properties. When using the surrogate model developed using the actual spectral re-

sponse properties, the surrogate model will be able to capture the changes in the

response due to the randomness in structural properties but would have a higher error

in prediction than surrogate models developed using the first approach.

• Unlike the preliminary studies, here the machine learning techniques with the capa-

bility to fit nonlinear data performed better than linear regression. This is expected,

because the high-fidelity data here is nonlinear, unlike in the preliminary studies.

The discussions regarding the prediction of maximum story drift ratio using data-driven

surrogate models for responses generated using actual high-fidelity data and randomness in

both structural properties and ground motions are provided below:

• For the prediction of maximum story drift ratio, it is seen that the best performance

obtained using the selected data-driven methods is an NRMSE of 0.70 and a R2 of

0.91 in testing for 100 ground motions in training. While this is still good, it does not

meet the performance target that we had set beforehand.

• The trend regarding the best predictor variables for the prediction of maximum story

drift ratio follows the same trend as in the preliminary study. Spectral velocity is the

best predictor variable, and adding more predictor variables increases the accuracy in

general.
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• In most cases, for the prediction of the maximum story drift ratio, it is seen that ANN

provided the best results. A possible reason for this is that ANNs have the capability

of capturing nonlinearity in data without overfitting the training data.

• Similar to the prediction of maximum roof drift ratio, here too it is seen that using the

actual spectral response properties causes overfitting of the training data, resulting in

poor testing performance.

Findings

This subsection lists the findings from the full study, where we used high-fidelity data

while considering randomness in structural properties as well as ground motions.

• 25 training points are enough to obtain data-driven surrogate models with acceptable

levels of performance for the prediction of maximum roof drift ratio.

• Spectral displacement is the best parameter for the prediction of maximum roof drift

ratio. Spectral acceleration is also a good parameter for this.

• For the prediction of maximum story drift ratio, a training set with 100 points is not

enough to obtain targeted performance.

• Spectral velocity is the best parameter for the prediction of maximum story drift ratio.

• Using mean spectral response properties provides better performance over actual spec-

tral response properties.

6.3 Physics-Based Surrogate Techniques

This section describes the physics-based surrogate models developed to predict the peak

structural responses for the select building. In this study, the physics-based surrogate models

are developed by using a simplified physics-based model to generate low-fidelity data and

then by creating a map between the low-fidelity data and the high-fidelity data.
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6.3.1 Design of Experiments

Latin hypercube sampling is used to sample the structural properties for developing

physics-based surrogate models for the prediction of MRDR and MSDR. A set with 25

points across the structural properties and 25 ground motions is kept aside for testing.

Three separate sets with 10, 25, and 100 data points are used for training the physics-based

surrogate models. The testing set as well as the training sets with 25 and 100 data points are

kept exactly the same as the sets used in the development of data-driven surrogate models

presented in Section  6.1 to facilitate direct comparison between the two types of surrogate

modeling techniques.

6.3.2 High-Fidelity Model

The 2D nonlinear Abaqus model described in Chapter  4 is used to generate high-fidelity

data points for the peak structural responses in this study. The peak structural responses

are obtained by carrying out a nonlinear dynamic analysis in Abaqus and then finding the

maximum value of the responses.

6.3.3 Physics-Based Modeling Techniques

The shear-building model with modifications to the mass matrix to account for a portion

of the mass of the columns, described in Chapter  5 is used as a low-fidelity model to generate

low-fidelity data for MRDR and MSDR. The discrete system of equations of motion for the

multi-degree of freedom model is solved using numerical integration (ODE45 in MATLAB).

The floor displacements obtained in this manner are then converted to the required drift

ratios.

Once the low-fidelity points are obtained for the training set, these points are mapped

to high-fidelity data points by using a machine learning technique. This technique is called

response correction using space mapping[  82 ]. Four options are used to map the low-fidelity

data to high-fidelity data: 1) Support Vector Machines (SVM), 2) Gaussian Process Regres-

sion (GPR), 3) Artificial Neural Networks (ANN), and 4) Linear Regression (LR). Bayesian
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optimization with 200 iterations is used to tune the hyperparameters. 5-fold cross-validation

is used to validate the model while using all of the points in training and the 25 points testing

set is used to test the accuracy and fit of prediction.

6.3.4 Results

The results for the performance of the developed physics-based surrogate models for the

prediction of the maximum roof drift ratio are provided in Tables  6.9 to  6.14 for increasing

number of training points.

Table 6.9. Physics-Based Model Results: MRDR - Inputs: Low-Fidelity
Estimate of MRDR - 10 Points

Mapping Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.10 0.998 0.04 0.999
GPR 0.09 0.998 0.03 1.000
ANN 0.12 0.997 0.03 1.000

Linear Regression 0.09 0.998 0.04 1.000

Table 6.10. Physics-Based Model Results: MRDR - Inputs: Low-Fidelity
Estimate of MRDR - 25 Points

Mapping Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.25 0.99 0.07 0.999
GPR 0.25 0.97 0.08 0.998
ANN 0.24 0.99 0.06 0.999

Linear Regression 0.18 0.993 0.07 0.999

Table 6.11. Physics-Based Model Results: MRDR - Inputs: Low-Fidelity
Estimate of MRDR - 100 Points

Mapping Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.33 0.98 0.17 0.99
GPR 0.36 0.97 0.11 0.998
ANN 0.32 0.98 0.36 0.97

Linear Regression 0.36 0.97 0.03 0.9999
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Table 6.12. Physics-Based Model Results: MSDR - Inputs: Low-Fidelity
Estimate of MSDR - 10 Points

Mapping Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.10 0.995 0.21 0.98
GPR 0.12 0.994 0.78 0.79
ANN 0.12 0.993 0.18 0.99

Linear Regression 0.13 0.994 0.18 0.99

Table 6.13. Physics-Based Model Results: MSDR - Inputs: Low-Fidelity
Estimate of MSDR - 25 Points

Mapping Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.24 0.98 0.23 0.99
GPR 0.29 0.97 0.20 0.99
ANN 0.17 0.99 0.29 0.98

Linear Regression 0.22 0.98 0.21 0.99

Table 6.14. Physics-Based Model Results: MSDR - Inputs: Low-Fidelity
Estimate of MSDR - 100 Points

Mapping Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.28 0.98 0.19 0.99
GPR 0.37 0.97 0.25 0.99
ANN 0.34 0.97 0.18 0.99

Linear Regression 0.30 0.98 0.19 0.99

6.3.5 Discussion

From Tables  6.9 and  6.12 the physics-based surrogate models trained on as little as ten

high-fidelity data points perform well for the estimation of both the maximum roof drift

ratio and the maximum story drift ratio. As the number of points in the training dataset is

increased, the error in validation increases marginally. This could be the result of an increase

in the variability of ground motions as the number of ground motions increases. It is noticed

that the overall mean of the maximum roof and the maximum story drift ratios decreased

when moving from set with 25 points to the set with 100 points. This could be a limitation
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of selecting ground motions for the training set in random. However, the performance on

the testing set remains the same on increasing the number of training data points.

This result shows that the low-fidelity shear building model captures most of the char-

acteristics of the response of the building to ground motion excitation. Given this, it is easy

to map the results obtained from the low-fidelity model to the high-fidelity responses. Also,

it is seen that all of the four machine learning techniques used to map the results, including

linear regression, provide similar results. This shows that it is a simple map to learn and

does not require a large training data set to do so.

Since the low-fidelity model captures the effects due to randomness in structural proper-

ties, this too is reflected in the prediction. Although this study is conducted on a symmetric

building with no variations in geometry, it can be expected that this method would perform

similarly on irregular structures with varying geometric as well as structural properties, as

the effects of these variations and irregularities can be captured by the low-fidelity model.

6.3.6 Findings

This subsection lists the findings from

• As low as 10 training points are enough to obtain physics-based surrogate models for

predicting both, the maximum roof drift ratio and the maximum story drift ratio with

an NRMSE of less than 0.10 and a R2 value of over 0.99 in testing.

• Any machine learning technique can be used to learn the map between the results from

the low-fidelity results and the high-fidelity responses.

6.4 Comparison between Data-Driven and Physics-Based Surrogates

This section compares the data-driven and physics-based surrogates developed in this

chapter for the prediction of peak structural responses. The performance, computational

cost, and capabilities of the two types of surrogate models.
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6.4.1 Comparison of Performance

Table  6.15 shows the best data-driven and physics-based surrogate models obtained for

the prediction of maximum roof drift ratio. From the table, it can be seen that both the

data-driven and physics-based surrogate models for the estimation of maximum roof drift

ratio perform similarly when trained on a training set with 25 points. However, the physics-

based model trained on a training set with just 10 points also shows a similar performance

to the data-driven model trained on 25 points.

Table 6.15. Data-Driven Surrogates vs Physics-Based Surrogates for Predic-
tion of MRDR: Performance

Model Number of Validation Validation Testing Testing
Type Training Points NRMSE R2 NRMSE R2

Data-Driven 25 0.09 0.998 0.25 0.99
Physics-Based 10 0.09 0.998 0.03 1.000
Physics-Based 25 0.24 0.99 0.06 0.999

Table  6.17 shows the best data-driven and physics-based surrogate models obtained for

the prediction of maximum story drift ratio. For the prediction of maximum story drift

ratio, the physics-based surrogate model trained on 100 points of training data performs

much better than the data-driven surrogate model trained on the same number of training

data points. The physics-based model trained on just 10 training data points provides better

estimates for the maximum story drift ratio than the data-driven model trained on 100

training data points. Both of the physics-based surrogate models satisfy the performance

target set beforehand, however, the data-driven surrogate model trained on 100 training

points does not. Therefore, for the prediction of maximum story drift ratio the physics-

based surrogate models perform better than the data-driven surrogate models developed in

this study.

6.4.2 Computational Time

Figure  6.21 compares the computational costs to evaluate the peak responses for different

types of models. The computational cost includes the time for training the models followed
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Table 6.16. Data-Driven Surrogates vs Physics-Based Surrogates for Predic-
tion of MSDR: Performance

Model Number of Validation Validation Testing Testing
Type Training Points NRMSE R2 NRMSE R2

Data-Driven 100 0.53 0.93 0.70 0.91
Physics-Based 10 0.13 0.994 0.18 0.99
Physics-Based 100 0.28 0.98 0.19 0.99

as well as the time for predicting the responses using the trained model. All of these costs

are calculated using the same device to allow for direct comparisons between each of these

methods. For the Abaqus 2D Nonlinear model (labeled as Abaqus on the graph), there is no

training time, and the time for evaluation for each simulation is assumed to be 180 minutes

(average of three and four hours). This however, does not include the time required to build

and validate the Abaqus model, which is usually much higher than the time required to run

the model.

(a) Computational Cost vs Number of
Simulations

(b) Computational Cost vs Number of
Simulations: Zoomed in

Figure 6.21. Computational Cost vs Number of Simulations for Different
Types of Models

For the data-driven surrogate models (labeled DDM on the graph, followed by the number

of training points used), the training cost includes the cost to generate high-fidelity data
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(which is equal to 180 minutes per training point), the cost to obtain the spectral response

properties (which is assumed to be about 16 seconds per training point) and the cost to run

the Bayesian optimization and train the models (assumed to be 5 minutes in total). The

prediction cost includes the time to obtain the spectral response properties (16 seconds per

evaluation) and the time to run the data-driven surrogate to obtain the prediction (which is

of the orders of milliseconds and can be neglected).

For the physics-based surrogate models (labeled PBM on the graph, followed by the

number of training points used), the training cost includes the cost to generate high-fidelity

data (which is equal to 180 minutes per training point), the cost to evaluate the low-fidelity

shear building model (assumed to be 25 seconds per training point), and the cost to run the

Bayesian optimization and train the models (assumed to be about 16 seconds per training

point). The prediction cost includes the time to run the low-fidelity shear building model

(25 points per evaluation) and the time to run the mapping between the low-fidelity and the

high-fidelity data (which is of the orders of milliseconds and can be neglected).

Table 6.17. Data-Driven Surrogates vs Physics-Based Surrogates for Predic-
tion of MSDR: Performance

Model Training Time Prediction Time
(s per training point) (s per prediction point)

Abaqus 2D Nonlinear - 10800
Data-Driven 11116 16

Physics-Based 11125 25

Figure  6.21b provides a magnified view by limiting the number of evaluations to 1000.

From the figure, it can be seen that while the initial computational cost is high for all the

surrogate models, the cost required for the Abaqus model goes over the cost for all of the

surrogate models when a slightly higher number of evaluations (less than 50 for all except

the data-driven surrogate with 200 training points) are required to be conducted. As for the

comparison between the data-driven and physics-based models, when the same number of

points are used to train each of these types of models, the initial cost is the same for both

the data-driven and physics-based models. However, since the cost for each evaluation, after

training, is lower for data-driven surrogate models, when the same number of data points
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are used to train a physics-based and a data-driven model, the data-driven model has the

lower cost as the number of evaluations required increases. When the number of evaluations

required is greater than 2000, the data-driven surrogate model trained with 25 training points

requires less computational time than the physics-based surrogate model with 10 training

points.

Therefore, for the prediction of maximum roof drift ratio, when the number of evaluations

required is less than 2000, the physics-based model with 10 points can be used, and when

the number of evaluations is over 2000, the data-driven model with 25 training points can be

used (since both these model have similar magnitudes of prediction errors, the computational

cost is the next parameter to choose which model to use). For the prediction of maximum

story drift ratio (if we assume that a data-driven surrogate model trained on 200 data points

provides the same level of performance as the physics-based surrogate models trained on

either 10 or 25 points), then the physics-based surrogate model (trained on either 10 points

or 25 points) requires less computational cost than the data-driven surrogate model for up

to over 200000 evaluations. When the number of evaluations required is over 200000 (a little

higher than 200000 to be more precise), the data-driven model will be less computationally

expensive than the physics-based models for predicting maximum story drift ratio.

6.4.3 Capabilities

In this subsection, the two types of surrogate models are compared in terms of application.

Machine learning models are usually applicable to very specific scenarios on which the models

are trained. Therefore, the data-driven models developed in this study will apply only to

this particular 15-story steel moment-resisting frame building with the structural properties

being inside the assumed range of variation. Therefore, the data-driven surrogate models

developed for this building should not be used for buildings with different configurations or

structural properties that are outside the bound of the variations considered in this study.

This is further supported by the fact that the tuned hyperparameters for each of these data-

driven surrogate models were somewhat arbitrary. Similarly, the same framework used in
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this study to develop data-driven surrogate models for the selected building may not directly

apply to other sorts of structures.

Furthermore, if data-driven surrogate models with mean spectral response properties

and no structural properties as inputs are used, then the effects of randomness in structural

properties are not captured by the data-driven surrogates. Moreover, if the data-driven

surrogate is built using a single input, the same response is obtained for all the ground

motions that have the same value of this input.

As for the physics-based surrogate models, since the low-fidelity model captures the

characteristics of the response of the building, these can be potentially used for structural

properties that are outside the range assumed in the study (unless the structural properties

are extremely high or low). Since the changes in geometry (with fixed symmetry) can be

captured by the changes in the overall stiffness and mass of the low-fidelity model, the same

surrogate models can potentially be used considering the randomness in geometric properties

as well (although this would have to be validated). Furthermore, the same type of framework

used here can be applied to other types of structures with a low-fidelity model capturing

the general behavior of the structure to ground motion and a map to modify the low-fidelity

results to the high-fidelity responses.

The physics-based surrogate models capture the effects of changes in structural properties

and also do not depend on a single ground motion characteristic for the prediction, therefore

not necessarily predicting the same values for the response for different ground motions with

certain similar characteristics.
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7. FRAGILITY ANALYSIS

In this chapter, the surrogate models developed in Chapter  6 are used for fragility analysis

of the selected structure.

7.1 Ground Motion Selection

It is assumed that the structure is located in Big Bear Lake City in California. This

location is selected because past ground motion records are easily available in databases

in this region owing to the California Strong Motion Instrumentation Program. 90 ground

motion records from regions near Big Bear Lake and other regions in California are selected

for the fragility study.

7.2 Engineering Demand Parameter

Staying consistent with past research, the maximum story drift ratio is selected as the

engineering demand parameter for this study. Damage states definitions provided by FEMA-

356[ 44 ] are used in the study. Table  7.1 provides the damage state definitions from FEMA-

356 for steel moment frame buildings. While FEMA-356 recommends not to use damage

states based on limiting drift values for absolute acceptance criteria for assessing damage in

a building post-earthquake, it does allow us to use the limiting drift values as a guide for

the probabilistic assessment of damage states of a building as is done here.

Table 7.1. Damage State Definitions from FEMA-356

Building Performance Levels Damage Transient Drift
Operational Overall Very Little -

Immediate Occupancy (IO) Light 0.7%
Life Safety (LS) Moderate 2.5%

Collapse Prevention (CP) Severe 5%
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7.3 Intensity Measure

In Chapter  6 it is found that spectral velocity is the ground motion intensity parameter

that correlates best with the maximum story drift ratio. Therefore, the 1.1% damped spectral

velocity at the fundamental frequency of the building is used as the ground motion intensity

measure for the fragility analysis.

7.4 Analysis

Incremental dynamic analysis is used for obtaining the fragility points. Each ground

motion is scaled to different values of spectral velocities from 200 mm/s to 3000 mm/s at

200 mm/s intervals (these values are spectral velocities for the unscaled structure, these

are scaled down by a factor of 5.48 before applying to the scaled building). Monte Carlo

simulation with 5040 points is used to sample the structural properties. This results in 56

different structural property values for each ground motion selected.

The physics-based surrogate models developed in Chapter  6 are used to obtain the max-

imum story drift ratios for each combination of ground motions and structural points. For

this, first, the low-fidelity results are obtained using the shear-building model with mass

matrix augmentation and then the trained mapping is used to obtain the predictions for

maximum story drifts.

Once the story drifts are obtained, these are compared to the limit values to obtain

the damage states. Using the damage states, the probability of the building exhibiting a

particular damage state is calculated as the ratio of the number of data points showing

a particular damage state to the total number of data points for each value of spectral

acceleration.

Maximum likelihood analysis is used to estimate the parameters of the best lognormal

curve to fit the fragility points. 95% confidence intervals for the estimated parameters

are found using the Wald confidence interval approach and plotted on the fragility curve.

While the Wald method is less accurate than the likelihood ratio method to determine

the confidence intervals, the confidence intervals can be obtained analytically and do not

require numerical solutions to be found like when using the likelihood ratio. The biggest
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limitation of the Wald method is that it assumes the normal approximation of the binomial

distribution, thus resulting in close to no variation at the ends. The convergence of the

estimated parameters is studied by varying the number of ground motions used for the

Monte Carlo Sampling.

The same process is carried out without varying the structural properties to see the

effects of randomness in structural properties as compared to randomness in ground motion

properties. For this, the response is obtained for the mean structural properties for each of

the 90 ground motion records, and fragility curves are obtained just using these responses.

7.5 Results and Discussions

Figure  7.1 shows the probability of damage states for each damage state at the selected

spectral velocity values as well as the lognormal curve fitted through the points.

Figure 7.1. Fragility Curves with Determined Fragility Points at Equally
Spaced Intervals

Figure  7.2 shows the fragility curve along with the 95% confidence bounds accounting

for uncertainties. It can be seen from this graph that the band covering the 95% confidence

interval is a narrow one, suggesting that the choice of spectral velocity as the intensity

measure to condition the structural response is a good one. The only drawback of selecting

spectral velocity as the ground motion intensity measure is the lack of adequate hazard maps
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listing the hazards for different regions in spectral velocity values as opposed to spectral

acceleration or peak ground acceleration values.

The confidence band is wider at probabilities in the mid-range as compared to the ends

where the probability of damage states being exhibited is 0 or 100%. This is partly be-

cause, at low ground motion intensities, no ground motion record produces high structural

responses, and at high ground motion intensities, all ground motion records produce high

structural responses. A part of the reason for such narrow confidence intervals near the ends

is due to the limitation of the Wald method used to obtain the confidence interval. However,

at medium values of ground motion intensities, some of the scaled ground motions drive the

structure into a certain damage state, while some others do not, causing uncertainty based

on the ground motion set selected.

Figure 7.2. Fragility Curves with Estimated Confidence Intervals

Figure  7.3 shows the convergence of the mean of the lognormal distribution estimated

through maximum likelihood estimate as the number of ground motions used in the Monte

Carlo simulation is increased. The mean of the lognormal distribution for a damage state is

the measure of the log of spectral velocity at which the probability of the structural response

exceeding that particular damage state is 0.5. Table  7.2 shows the values of spectral velocity

(rounded to the nearest multiple of 50 mm/s) at which the mean probability of exceeding

each damage state is 0.5 when using 90 ground motions in the Monte Carlo simulation.
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Finally, it can be seen that the value of the mean of the lognormal distribution reaches a

constant value within 65 ground motions.

Figure 7.3. Convergence of Means of Fragility Curve with Number of Ground Motions

Table 7.2. Values of Spectral Velocity for Mean Probability of Exceeding
Damage State of 0.5 Using 90 Ground Motions in the MCS

Building Performance Levels Spectral Velocity (mm/s)
Immediate Occupancy (IO) 350

Life Safety (LS) 1250
Collapse Prevention (CP) 2450

Similarly, Figure  7.4 shows the convergence of the standard deviation estimate of the

fragility curves obtained using maximum likelihood analysis. The standard deviation of the

lognormal distribution is a measure of the steepness of the fragility curve. A lower standard

deviation means a steeper curve. Similar to the mean of the lognormal distribution, the

standard deviation reaches a near-constant value of around 65 ground motions. For both the

mean, as well as standard deviation estimates, it is seen that the uncertainty is higher for

Immediate Occupancy and Life Safety limit states than it is for Collapse Prevention limit

states in the range of spectral velocity selected.

Figure  7.5 shows the fragility curves obtained when the randomness in structural prop-

erties is ignored and the fragility is calculated at the mean values of structural properties.
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Figure 7.4. Convergence of Standard Deviations of Fragility Curve with
Number of Ground Motions

It can be seen that there is almost no change in the fragility or the bounds of estimated

parameters on removing the variation in structural properties. This confirms that the ef-

fect of ground motion variation is much more pronounced than the effect of randomness in

structural parameters on the fragility of buildings.

Figure 7.5. Fragility Curves for Building with Fixed Structural Properties

Figures  7.6 and  7.7 show the convergence of the estimated mean and standard deviation

values for the study with fixed structural properties. It can be seen from these graphs that
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here also the convergence is obtained when around 65 ground motions are used in the Monte

Carlo simulation. The estimates for the mean obtained using constant structural properties

match closely the estimates obtained when considering the randomness in structural prop-

erties. This reaffirms that the effects due to variation in ground motions trump the effects

due to variation in structural properties.

Figure 7.6. Convergence of Means of Fragility Curve with Number of Ground
Motions for Constant Structural Properties

Figure 7.7. Convergence of Standard Deviations of Fragility Curve with
Number of Ground Motions for Constant Structural Properties
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7.6 Findings

The findings from the study are listed in this section:

• Spectral velocity is a good choice for the ground motion intensity measure when using

maximum story drift ratio as the engineering demand parameter.

• The effects due to randomness in ground motion characteristics on the fragility curve

are significantly higher than corresponding effects due to randomness in structural

properties.

• For the building and location selected (15-story steel moment resisting frame building

in California), around 65 ground motions are required for the convergence of parameters

for the lognormal distribution of fragility.
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8. CONCLUSIONS AND FUTURE WORK

This chapter lists the conclusions drawn from this study and lists a set of possible future

work for the study conducted in this thesis.

8.1 Conclusions

In this study, the process of developing data-driven and physics-based surrogate models

for the prediction of responses of buildings to ground motion excitations is studied. The two

types of surrogate models are compared and the limitations and capabilities of both of these

types of surrogate models are learned.

When using data-driven surrogate models for the selected building, it is found to be

easier to predict the maximum roof drift ratio than the maximum story drift ratio. Just 25

training points are seen to be sufficient for the prediction of the maximum roof drift ratio

using data-driven surrogate models. The number of training data points required to predict

the maximum roof drift ratio when varying the structural properties does not increase much

compared to when structural properties are fixed. On the other hand, when predicting the

maximum story drift ratio using data-driven surrogate models, the target performance is not

obtained with 100 data points. Furthermore, there is a significant increase in the number

of data points required in testing when accounting for variations in structural properties as

compared to when keeping the structural properties fixed. One of the reasons for the higher

difficulty when predicting the maximum story drift ratio is that, unlike the maximum roof

drift ratio, the maximum story drift ratio may occur in any of the 15 stories of the building.

This makes it difficult for a data-driven technique to learn the pattern with a limited number

of training points.

Meanwhile, while using physics-based surrogate models for the selected building, the

relative ease of predicting the maximum roof drift ratio and the maximum story drift ratio is

the same. It is also found that physics-based models require a lower amount of training data

points to achieve similar levels of accuracy as data-driven surrogate models with a higher

number of training data points. Therefore, while the time required for prediction is lower

for data-driven surrogate models, the initial time to train a model with low magnitudes
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of errors is significantly lesser for physics-based surrogate models. One of the reasons for

both these observations is that the low-fidelity model captures the physical characteristics

of the building’s response. Therefore, the map used to match the low-fidelity data to the

high-fidelity data just has to learn the differences in the two types of data at various levels

of responses.

Furthermore, the framework used for developing physics-based surrogate models herein

can be applied to other structures as well as long as a low-fidelity model can be built,

capturing the variation in mass and stiffness. The low-fidelity models could also have the

capability of capturing the effects of changes in the geometry and topology of buildings

(although this will need to be validated).

Finally, in this study, it is found that among the ground motion characteristics selected,

the spectral displacement has the best correlation with the maximum roof drift ratio, and

the spectral velocity has the best correlation with the maximum story drift ratio. Fragility

curves developed using these parameters as intensity measures while using the maximum roof

drift ratio and the maximum story drift ratio as engineering demand parameters respectively

will contain less variability.

The surrogate models developed in this study can be used for fragility analysis, parametric

studies, and for exploring the design space during the conceptual design stage. In this study,

the surrogate models are used to conduct fragility analysis for the selected building using a

maximum likelihood estimate to obtain the parameters along with confidence bounds for the

fragility curve. The findings listed previously are used when developing the fragility curves.

The maximum story drift ratio is selected as the engineering demand parameter, and the

spectral velocity is used as the ground motion intensity measure.

8.2 Future Work

This section lists a set of potential future work for the study conducted in this thesis.

• Variation in building geometry: In this study, it was assumed that the building geome-

try remains the same and only the material properties vary. A study can be conducted

to vary the building geometry and topology as well and study how different surrogate
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modeling techniques will have to be adapted to incorporate this change. This could

potentially facilitate the use of surrogate models to make early design decisions.

• Irregularity in the building: In this study, the building was assumed to be a symmetric

moment-resisting frame. A study can be conducted modeling the irregularities in the

geometric or the material properties in different parts of the building to study how the

surrogate modeling techniques will have to be adapted to incorporate this change.

• Include damage and imperfections in joints in the high-fidelity model, increasing the

complexity of the problem and studying how the surrogate modeling techniques have

to be adapted based on this change.

• Compare the fragility curves developed in this study with the fragility curves developed

using the capacity spectrum method. A comparison regarding the reliability of the

fragility curves obtained using the two methods and the computational time required

to obtain these curves can help determine which method would be more useful based

on the application.

• Develop knowledge-based surrogate models using observed data for similar structures

from previous earthquakes or by using expert judgement. However, the biggest chal-

lenge here is that this data is difficult to come by.
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A. APPENDIX 1: RESULTS FOR DATA-DRIVEN MODELS

FOR THE PREDICTION OF PEAK RESPONSES IN

PRELIMINARY STUDY 1

Table A.1. Data-Driven Model Results: MRDR - Inputs: PGA - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 2.74 0.19 1.75 0.49
GPR 2.83 0.14 2.10 0.27
ANN 2.62 0.26 1.98 0.35

Linear Regression 2.90 0.10 2.17 0.22

Table A.2. Data-Driven Model Results: MRDR - Inputs: PGA - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 1.94 0.35 3.00 -0.49
GPR 2.03 0.29 3.46 -0.99
ANN 1.99 3.94 1.83 0.44

Linear Regression 2.14 0.20 2.06 0.30

Table A.3. Data-Driven Model Results: MRDR - Inputs: PGA - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 1.94 0.29 1.93 0.39
GPR 1.84 0.36 2.72 -0.22
ANN 1.87 0.34 1.83 0.44

Linear Regression 1.94 0.30 2.08 0.28

Table A.4. Data-Driven Model Results: MRDR - Inputs: PGA - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 1.74 0.31 1.97 0.36
GPR 1.75 0.30 2.41 0.04
ANN 1.72 0.32 1.85 0.43

Linear Regression 1.79 3.19 2.08 0.28
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Table A.5. Data-Driven Model Results: MRDR - Inputs: Sa - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.19 0.996 0.35 0.98
GPR 0.25 0.993 0.35 0.98
ANN 0.23 0.995 0.34 0.98

Linear Regression 0.31 0.99 0.38 0.98

Table A.6. Data-Driven Model Results: MRDR - Inputs: Sv - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.61 0.96 1.58 0.59
GPR 0.72 0.95 1.09 0.80
ANN 0.86 0.92 0.43 0.97

Linear Regression 0.81 0.93 0.47 0.96

Table A.7. Data-Driven Model Results: MRDR - Inputs: Sv - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.42 0.97 2.02 0.33
GPR 0.55 0.94 0.47 0.96
ANN 0.53 0.95 0.64 0.93

Linear Regression 0.53 0.95 0.51 0.96

Table A.8. Data-Driven Model Results: MRDR - Inputs: Sv - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.55 0.94 1.52 0.62
GPR 0.50 0.95 1.32 0.71
ANN 0.51 0.95 0.80 0.89

Linear Regression 0.60 0.93 0.47 0.96

Table A.9. Data-Driven Model Results: MRDR - Inputs: Sv - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.55 0.93 0.51 0.96
GPR 0.49 0.94 0.47 0.96
ANN 0.52 0.94 0.53 0.95

Linear Regression 0.53 0.94 0.47 0.96
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Table A.10. Data-Driven Model Results: MRDR - Inputs: Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.18 0.997 0.34 0.98
GPR 0.21 0.996 0.43 0.97
ANN 0.22 0.995 0.42 0.97

Linear Regression 0.26 0.99 0.38 0.98

Table A.11. Data-Driven Model Results: MRDR - Inputs: PGA, Sa - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.11 0.999 0.36 0.98
GPR 0.16 0.997 0.14 0.997
ANN 0.12 0.998 0.15 0.996

Linear Regression 0.32 0.99 0.24 0.99

Table A.12. Data-Driven Model Results: MRDR - Inputs: PGA, Sv - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.30 0.99 0.68 0.92
GPR 0.40 0.98 0.85 0.88
ANN 0.34 0.99 0.73 0.91

Linear Regression 0.63 0.96 0.46 0.97

Table A.13. Data-Driven Model Results: MRDR - Inputs: PGA, Sv - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.59 0.94 0.39 0.98
GPR 0.41 0.97 0.72 0.91
ANN 0.47 0.96 0.68 0.92

Linear Regression 0.54 0.95 0.40 0.97

Table A.14. Data-Driven Model Results: MRDR - Inputs: PGA, Sv - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.48 0.96 0.38 0.98
GPR 0.47 0.96 0.42 0.97
ANN 0.45 0.96 0.42 0.97

Linear Regression 0.47 0.96 0.42 0.97
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Table A.15. Data-Driven Model Results: MRDR - Inputs: PGA, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.13 0.998 0.22 0.99
GPR 0.39 0.98 0.28 0.99
ANN 0.29 0.99 0.29 0.99

Linear Regression 0.36 0.99 0.24 0.99

Table A.16. Data-Driven Model Results: MRDR - Inputs: Sa, Sv - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.12 0.999 0.33 0.98
GPR 0.13 0.998 0.28 0.99
ANN 0.12 0.999 0.25 0.99

Linear Regression 0.13 0.998 0.27 0.99

Table A.17. Data-Driven Model Results: MRDR - Inputs: Sa, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.25 0.99 0.33 0.98
GPR 0.28 0.99 0.41 0.97
ANN 0.21 0.996 0.37 0.98

Linear Regression 0.24 0.994 0.32 0.98

Table A.18. Data-Driven Model Results: MRDR - Inputs: Sv, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.16 0.997 0.27 0.99
GPR 0.14 0.998 0.20 0.99
ANN 0.13 0.998 0.26 0.99

Linear Regression 0.15 0.998 0.28 0.99

Table A.19. Data-Driven Model Results: MRDR - Inputs: PGA, Sa, Sv - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.31 0.99 0.29 0.99
GPR 0.46 0.98 0.29 0.99
ANN 0.21 0.996 0.32 0.98

Linear Regression 0.46 0.98 0.29 0.99
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Table A.20. Data-Driven Model Results: MRDR - Inputs: PGA, Sa, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.13 0.998 0.42 0.97
GPR 0.34 0.99 0.25 0.99
ANN 0.28 0.99 0.27 0.99

Linear Regression 0.22 0.996 0.19 0.99

Table A.21. Data-Driven Model Results: MRDR - Inputs: PGA, Sv, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.27 0.99 0.28 0.99
GPR 0.17 0.997 0.28 0.99
ANN 0.14 0.998 0.28 0.99

Linear Regression 0.20 0.996 0.29 0.99

Table A.22. Data-Driven Model Results: MRDR - Inputs: Sa, Sv, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.15 0.998 0.27 0.99
GPR 0.31 0.99 0.34 0.98
ANN 0.11 0.999 0.25 0.99

Linear Regression 0.22 0.995 0.29 0.99

Table A.23. Data-Driven Model Results: MRDR - Inputs: PGA, Sa, Sv, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.13 0.998 0.29 0.99
GPR 0.13 0.998 0.34 0.98
ANN 0.12 0.998 0.32 0.98

Linear Regression 0.26 0.99 0.40 0.97

Table A.24. Data-Driven Model Results: MSDR - Inputs: PGA - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 1.66 0.55 1.25 0.70
GPR 1.72 0.51 2.44 -0.15
ANN 1.61 0.57 1.15 0.74

Linear Regression 1.83 0.45 1.31 0.67
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Table A.25. Data-Driven Model Results: MSDR - Inputs: PGA - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.64 0.58 1.13 0.75
GPR 1.25 0.61 1.83 0.36
ANN 1.21 0.63 1.02 0.80

Linear Regression 1.38 0.52 1.29 0.68

Table A.26. Data-Driven Model Results: MSDR - Inputs: PGA - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 1.27 0.57 1.10 0.77
GPR 1.30 0.55 1.10 0.78
ANN 1.27 0.57 1.02 0.80

Linear Regression 1.35 0.51 1.28 0.68

Table A.27. Data-Driven Model Results: MSDR - Inputs: PGA - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 1.18 0.56 1.11 0.76
GPR 1.18 0.55 1.09 0.77
ANN 1.16 0.57 1.11 0.76

Linear Regression 1.24 0.50 1.28 0.68

Table A.28. Data-Driven Model Results: MSDR - Inputs: Sa - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.85 0.89 1.23 0.71
GPR 1.01 0.84 1.50 0.57
ANN 0.93 0.87 1.05 0.79

Linear Regression 1.54 0.64 1.26 0.70

Table A.29. Data-Driven Model Results: MSDR - Inputs: Sa - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.47 0.94 1.03 0.80
GPR 0.50 0.93 1.18 0.73
ANN 0.46 0.95 1.13 0.75

Linear Regression 0.81 0.83 1.28 0.69
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Table A.30. Data-Driven Model Results: MSDR - Inputs: Sa - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.61 0.90 1.19 0.73
GPR 0.58 0.91 0.96 0.82
ANN 0.55 0.92 1.01 0.80

Linear Regression 0.75 0.57 1.27 0.69

Table A.31. Data-Driven Model Results: MSDR - Inputs: Sa - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.56 0.90 1.18 0.73
GPR 0.57 0.90 1.05 0.79
ANN 0.55 0.90 1.02 0.80

Linear Regression 0.66 0.86 1.27 0.69

Table A.32. Data-Driven Model Results: MSDR - Inputs: Sv - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.53 0.95 0.75 0.89
GPR 0.62 0.94 0.64 0.92
ANN 0.47 0.96 0.62 0.93

Linear Regression 0.77 0.90 0.82 0.87

Table A.33. Data-Driven Model Results: MSDR - Inputs: Sv - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.33 0.97 0.79 0.88
GPR 0.46 0.95 0.63 0.92
ANN 0.39 0.96 0.60 0.93

Linear Regression 0.51 0.94 0.82 0.87

Table A.34. Data-Driven Model Results: MSDR - Inputs: Sv - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.35 0.97 0.86 0.86
GPR 0.38 0.96 0.87 0.85
ANN 0.40 0.96 0.61 0.93

Linear Regression 0.43 0.95 0.81 0.87
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Table A.35. Data-Driven Model Results: MSDR - Inputs: Sv - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.33 0.96 0.82 0.87
GPR 0.34 0.96 0.76 0.89
ANN 0.39 0.95 0.62 0.93

Linear Regression 0.39 0.95 0.80 0.88

Table A.36. Data-Driven Model Results: MSDR - Inputs: Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.68 0.92 1.25 0.70
GPR 0.81 0.66 1.23 0.71
ANN 0.74 0.54 1.1 0.77

Linear Regression 1.17 0.77 1.26 0.67

Table A.37. Data-Driven Model Results: MSDR - Inputs: Sd - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.56 0.92 1.21 0.72
GPR 0.59 0.91 1.31 0.67
ANN 0.65 0.89 1.16 0.74

Linear Regression 0.87 0.75 1.28 0.68

Table A.38. Data-Driven Model Results: MSDR - Inputs: Sd - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.60 0.91 1.21 0.72
GPR 0.67 0.89 0.99 0.81
ANN 0.60 0.91 1.04 0.79

Linear Regression 0.78 0.84 1.28 0.69

Table A.39. Data-Driven Model Results: MSDR - Inputs: Sd - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.56 0.90 1.19 0.73
GPR 0.56 0.90 0.99 0.81
ANN 0.53 0.91 1.06 0.78

Linear Regression 0.74 0.83 1.27 0.69
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Table A.40. Data-Driven Model Results: MSDR - Inputs: PGA, Sa - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.36 0.98 0.61 0.93
GPR 0.40 0.98 0.53 0.95
ANN 0.49 0.97 0.51 0.95

Linear Regression 0.50 0.97 0.55 0.94

Table A.41. Data-Driven Model Results: MSDR - Inputs: PGA, Sa - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.37 0.96 0.64 0.92
GPR 0.31 0.97 0.61 0.93
ANN 0.31 0.97 0.57 0.94

Linear Regression 0.38 0.96 0.53 0.95

Table A.42. Data-Driven Model Results: MSDR - Inputs: PGA, Sa - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.40 0.96 0.82 0.87
GPR 0.48 0.94 0.54 0.94
ANN 0.40 0.96 0.56 0.94

Linear Regression 0.42 0.95 0.53 0.94

Table A.43. Data-Driven Model Results: MSDR - Inputs: PGA, Sa - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.34 0.96 0.82 0.87
GPR 0.41 0.95 0.52 0.95
ANN 0.33 0.96 0.55 0.94

Linear Regression 0.36 0.96 0.3 0.95

Table A.44. Data-Driven Model Results: MSDR - Inputs: PGA, Sv - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.73 0.92 0.56 0.94
GPR 0.49 0.96 0.58 0.94
ANN 0.46 0.97 0.53 0.95

Linear Regression 0.66 0.93 0.52 0.95

158



Table A.45. Data-Driven Model Results: MSDR - Inputs: PGA, Sv - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.40 0.96 0.63 0.92
GPR 0.45 0.95 0.62 0.93
ANN 0.46 0.95 0.57 0.94

Linear Regression 0.51 0.93 0.51 0.95

Table A.46. Data-Driven Model Results: MSDR - Inputs: PGA, Sv - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.42 0.95 0.56 0.94
GPR 0.42 0.95 0.56 0.94
ANN 0.38 0.96 0.58 0.93

Linear Regression 0.45 0.95 0.64 0.92

Table A.47. Data-Driven Model Results: MSDR - Inputs: PGA, Sv - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.33 0.97 0.65 0.92
GPR 0.36 0.96 0.63 0.92
ANN 0.31 0.97 0.58 0.94

Linear Regression 0.44 0.94 0.57 0.94

Table A.48. Data-Driven Model Results: MSDR - Inputs: PGA, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.46 0.97 0.58 0.93
GPR 0.39 0.97 0.53 0.95
ANN 0.53 0.95 0.50 0.95

Linear Regression 0.50 0.96 0.55 0.94

Table A.49. Data-Driven Model Results: MSDR - Inputs: PGA, Sd - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.37 0.97 0.65 0.92
GPR 0.35 0.97 0.57 0.94
ANN 0.33 0.97 0.50 0.95

Linear Regression 0.36 0.97 0.53 0.95
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Table A.50. Data-Driven Model Results: MSDR - Inputs: Sa, Sv - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.26 0.99 0.40 0.97
GPR 0.55 0.95 0.58 0.93
ANN 0.51 0.96 0.64 0.92

Linear Regression 0.92 0.87 0.65 0.92

Table A.51. Data-Driven Model Results: MSDR - Inputs: Sa, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.83 0.90 1.22 0.72
GPR 0.83 0.90 1.02 0.80
ANN 0.98 0.86 0.77 0.88

Linear Regression 0.64 0.94 0.89 0.85

Table A.52. Data-Driven Model Results: MSDR - Inputs: Sa, Sd - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.47 0.94 1.11 0.76
GPR 0.50 0.93 1.07 0.78
ANN 0.53 0.93 1.05 0.79

Linear Regression 0.66 0.88 0.84 0.86

Table A.53. Data-Driven Model Results: MSDR - Inputs: Sa, Sd - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.51 0.93 1.18 0.73
GPR 0.49 0.94 0.93 0.83
ANN 0.46 0.94 0.81 0.87

Linear Regression 0.41 0.96 0.82 0.87

Table A.54. Data-Driven Model Results: MSDR - Inputs: Sa, Sd - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.56 0.91 1.21 0.72
GPR 0.52 0.92 0.96 0.82
ANN 0.45 0.94 0.86 0.86

Linear Regression 0.46 0.94 0.81 0.87
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Table A.55. Data-Driven Model Results: MSDR - Inputs: Sv, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.29 0.99 0.45 0.96
GPR 0.57 0.95 0.75 0.89
ANN 0.45 0.97 0.63 0.92

Linear Regression 0.83 0.89 0.65 0.92

Table A.56. Data-Driven Model Results: MSDR - Inputs: PGA, Sa, Sv - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.49 0.96 0.60 0.93
GPR 0.52 0.96 0.56 0.94
ANN 0.36 0.98 0.55 0.94

Linear Regression 0.92 0.86 0.57 0.94

Table A.57. Data-Driven Model Results: MSDR - Inputs: PGA, Sa, Sv - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.41 0.96 0.60 0.93
GPR 0.34 0.97 0.61 0.93
ANN 0.35 0.97 0.51 0.95

Linear Regression 0.53 0.93 0.49 0.95

Table A.58. Data-Driven Model Results: MSDR - Inputs: PGA, Sa, Sv - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.43 0.95 0.57 0.94
GPR 0.43 0.95 0.54 0.94
ANN 0.37 0.96 0.57 0.94

Linear Regression 0.40 0.96 0.64 0.92

Table A.59. Data-Driven Model Results: MSDR - Inputs: PGA, Sa, Sv - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.35 0.96 0.61 0.93
GPR 0.36 0.96 0.63 0.92
ANN 0.33 0.97 0.53 0.95

Linear Regression 0.45 0.94 0.55 0.94
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Table A.60. Data-Driven Model Results: MSDR - Inputs: PGA, Sa, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.55 0.95 0.59 0.93
GPR 0.51 0.96 0.57 0.94
ANN 0.32 0.98 0.51 0.95

Linear Regression 0.54 0.82 0.66 0.92

Table A.61. Data-Driven Model Results: MSDR - Inputs: PGA, Sa, Sd - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.35 0.97 0.65 0.92
GPR 0.35 0.97 0.59 0.93
ANN 0.30 0.98 0.54 0.94

Linear Regression 0.61 0.90 0.62 0.93

Table A.62. Data-Driven Model Results: MSDR - Inputs: PGA, Sa, Sd - 75 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.38 0.96 0.59 0.93
GPR 0.41 0.96 0.66 0.92
ANN 0.36 0.97 0.52 0.95

Linear Regression 0.41 0.96 0.66 0.92

Table A.63. Data-Driven Model Results: MSDR - Inputs: PGA, Sa, Sd - 100 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.41 0.94 0.66 0.92
GPR 0.40 0.95 0.62 0.93
ANN 0.34 0.96 0.55 0.94

Linear Regression 0.43 0.94 0.58 0.93

Table A.64. Data-Driven Model Results: MSDR - Inputs: PGA, Sv, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.84 0.71 0.59 0.93
GPR 0.61 0.94 0.57 0.94
ANN 0.36 0.98 0.52 0.95

Linear Regression 1.23 0.77 0.59 0.93
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Table A.65. Data-Driven Model Results: MSDR - Inputs: PGA, Sv, Sd - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.36 0.97 0.60 0.93
GPR 0.32 0.97 0.50 0.95
ANN 0.28 0.98 0.56 0.94

Linear Regression 0.70 0.87 0.49 0.95

Table A.66. Data-Driven Model Results: MSDR - Inputs: Sa, Sv, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.42 0.97 0.35 0.98
GPR 0.65 0.93 0.58 0.94
ANN 0.54 0.95 0.62 0.93

Linear Regression 0.87 0.88 0.65 0.92

Table A.67. Data-Driven Model Results: MSDR - Inputs: PGA, Sa, Sv, Sd - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.68 0.93 0.63 0.92
GPR 0.57 0.95 0.50 0.95
ANN 0.40 0.98 0.59 0.93

Linear Regression 1.14 0.80 0.53 0.95

Table A.68. Data-Driven Model Results: MSDR - Inputs: PGA, Sa, Sv, Sd - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.45 0.95 0.61 0.93
GPR 0.38 0.96 0.56 0.94
ANN 0.30 0.98 0.50 0.95

Linear Regression 0.71 0.87 0.57 0.94
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B. APPENDIX 2: RESULTS FOR DATA-DRIVEN MODELS

FOR THE PREDICTION OF PEAK RESPONSES IN

PRELIMINARY STUDY 2: ACTUAL SPECTRAL RESPONSE

PROPERTIES

Table B.1. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa actual - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.15 0.99 0.59 0.92
GPR 0.22 0.99 0.54 0.93
ANN 0.12 0.996 0.53 0.93

Linear Regression 0.32 0.97 0.59 0.92

Table B.2. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa actual - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.30 0.98 0.51 0.94
GPR 0.39 0.97 0.54 0.93
ANN 0.34 0.97 0.49 0.94

Linear Regression 0.40 0.97 0.43 0.95

Table B.3. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sa actual - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.26 0.98 0.61 0.91
GPR 0.27 0.98 0.58 0.92
ANN 0.16 0.99 0.57 0.92

Linear Regression 0.33 0.97 0.51 0.92
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Table B.4. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sa actual - 50 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.19 0.99 0.32 0.97
GPR 0.22 0.99 0.57 0.92
ANN 0.17 0.99 0.43 0.95

Linear Regression 0.32 0.98 0.41 0.96

Table B.5. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sd actual - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.08 0.998 0.62 0.91
GPR 0.14 0.995 0.58 0.92
ANN 0.24 0.99 0.45 0.95

Linear Regression 0.23 0.99 0.39 0.96

Table B.6. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sd actual - 25 Points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.08 0.998 0.62 0.91
GPR 0.14 0.995 0.58 0.92
ANN 0.24 0.99 0.45 0.95

Linear Regression 0.23 0.99 0.39 0.96

Table B.7. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.29 0.98 0.58 0.92
GPR 0.24 0.99 0.48 0.95
ANN 0.13 0.996 0.52 0.94

Linear Regression 0.27 0.95 0.45 0.95
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Table B.8. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.17 0.99 0.63 0.90
GPR 0.21 0.99 0.51 0.94
ANN 0.18 0.99 0.54 0.93

Linear Regression 0.15 0.995 0.51 0.94

Table B.9. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.26 0.99 0.73 0.87
GPR 0.21 0.99 0.84 0.83
ANN 0.31 0.98 0.56 0.92

Linear Regression 0.30 0.98 0.52 0.93

Table B.10. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.26 0.98 0.71 0.89
GPR 0.28 0.98 0.36 0.93
ANN 0.40 0.96 0.58 0.93

Linear Regression 0.14 0.97 0.56 0.93

Table B.11. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.25 0.99 0.87 0.87
GPR 0.23 0.99 0.88 0.87
ANN 0.13 0.97 0.62 0.94

Linear Regression 0.09 0.98 0.57 0.95
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Table B.12. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sa actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.16 0.99 0.63 0.90
GPR 0.29 0.98 0.54 0.93
ANN 0.15 0.995 0.62 0.91

Linear Regression 0.24 0.99 0.50 0.94

Table B.13. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sa actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.27 0.98 0.52 0.93
GPR 0.27 0.98 0.60 0.91
ANN 0.27 0.98 0.39 0.96

Linear Regression 0.30 0.98 0.52 0.93

Table B.14. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.32 0.98 0.36 0.97
GPR 0.18 0.99 0.37 0.97
ANN 0.10 0.998 0.39 0.96

Linear Regression 0.18 0.99 0.35 0.97

Table B.15. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.18 0.99 0.4 0.96
GPR 0.23 0.99 0.38 0.97
ANN 0.08 0.998 0.39 0.96

Linear Regression 0.19 0.99 0.33 0.97
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Table B.16. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa actual, Sv actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.20 0.99 0.68 0.89
GPR 0.26 0.98 0.57 0.92
ANN 0.13 0.996 0.52 0.94

Linear Regression 0.25 0.98 0.50 0.94

Table B.17. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa actual, Sv actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.20 0.99 0.41 0.96
GPR 0.19 0.99 0.39 0.96
ANN 0.20 0.99 0.41 0.96

Linear Regression 0.19 0.99 0.39 0.96

Table B.18. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sa actual, Sv actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.15 0.99 0.62 0.91
GPR 0.29 0.98 0.53 0.93
ANN 0.35 0.97 0.53 0.93

Linear Regression 0.20 0.99 0.50 0.94

Table B.19. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sa actual, Sv actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.16 0.99 0.36 0.97
GPR 0.24 0.99 1.00 0.75
ANN 0.16 0.99 0.31 0.98

Linear Regression 0.20 0.99 0.22 0.99
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Table B.20. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.09 0.998 0.52 0.94
GPR 0.12 0.996 0.56 0.92
ANN 0.13 0.996 0.54 0.93

Linear Regression 0.21 0.99 0.33 0.97

Table B.21. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sa actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.34 0.97 0.46 0.95
GPR 0.19 0.99 0.56 0.93
ANN 0.13 0.996 0.52 0.94

Linear Regression 0.27 0.98 0.37 0.97

Table B.22. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sv actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.24 0.99 0.33 0.97
GPR 0.17 0.99 0.59 0.92
ANN 0.26 0.98 0.39 0.96

Linear Regression 0.20 0.99 0.46 0.95

Table B.23. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sv actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.22 0.99 0.43 0.96
GPR 0.18 0.99 0.51 0.94
ANN 0.25 0.99 0.51 0.96

Linear Regression 0.19 0.99 0.25 0.99
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Table B.24. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa actual, Sv actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.28 0.98 0.64 0.90
GPR 0.13 0.996 0.65 0.90
ANN 0.08 0.999 0.52 0.94

Linear Regression 0.24 0.99 0.54 0.93

Table B.25. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa actual, Sv actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.17 0.99 0.55 0.93
GPR 0.24 0.99 0.74 0.87
ANN 0.34 0.97 0.42 0.96

Linear Regression 0.31 0.98 0.42 0.96

Table B.26. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sa actual, Sv actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.24 0.99 1.39 0.54
GPR 0.23 0.99 0.64 0.90
ANN 0.21 0.99 0.56 0.92

Linear Regression 0.19 0.99 0.58 0.92

Table B.27. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sa actual, Sv actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.21 0.99 0.36 0.97
GPR 0.25 0.99 0.40 0.96
ANN 0.16 0.99 0.43 0.95

Linear Regression 0.29 0.98 0.33 0.98
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Table B.28. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.20 0.99 0.40 0.96
GPR 0.16 0.99 0.59 0.92
ANN 0.44 0.95 0.40 0.96

Linear Regression 0.14 0.995 0.36 0.97

Table B.29. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sa actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.19 0.99 0.51 0.94
GPR 0.20 0.99 0.42 0.96
ANN 0.14 0.995 0.46 0.95

Linear Regression 0.18 0.99 0.36 0.97

Table B.30. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sv actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.24 0.99 0.33 0.97
GPR 0.14 0.996 0.40 0.96
ANN 0.31 0.98 0.39 0.96

Linear Regression 0.21 0.99 0.32 0.98

Table B.31. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sv actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.15 0.99 0.62 0.91
GPR 0.26 0.98 0.47 0.95
ANN 0.29 0.98 0.47 0.95

Linear Regression 0.27 0.98 0.26 0.98
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Table B.32. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa actual, Sv actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.31 0.98 0.34 0.97
GPR 0.15 0.99 0.72 0.88
ANN 0.28 0.98 0.41 0.96

Linear Regression 0.25 0.98 0.26 0.98

Table B.33. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sa actual, Sv actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.16 0.99 0.51 0.94
GPR 0.17 0.99 0.44 0.95
ANN 0.15 0.995 0.41 0.96

Linear Regression 0.21 0.99 0.35 0.97

Table B.34. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa actual, Sv actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.17 0.99 0.33 0.97
GPR 0.15 0.99 0.62 0.91
ANN 0.30 0.98 0.39 0.96

Linear Regression 0.21 0.99 0.32 0.98

Table B.35. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sa actual, Sv actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.19 0.99 0.43 0.96
GPR 0.22 0.99 0.46 0.95
ANN 0.14 0.995 0.52 0.94

Linear Regression 0.20 0.99 0.36 0.97
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Table B.36. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa actual, Sv actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.63 0.87 1.41 0.48
GPR 0.67 0.86 0.76 0.85
ANN 0.68 0.85 0.78 0.84

Linear Regression 0.52 0.92 0.73 0.86

Table B.37. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa actual, Sv actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.54 0.93 0.73 0.88
GPR 0.64 0.90 0.72 0.88
ANN 0.57 0.92 0.70 0.89

Linear Regression 0.57 0.92 0.72 0.88

Table B.38. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa actual, Sv actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.33 0.97 0.89 0.83
GPR 0.33 0.97 0.75 0.88
ANN 0.36 0.96 0.62 0.92

Linear Regression 0.39 0.96 0.72 0.89

Table B.39. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa actual, Sv actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.35 0.97 0.84 0.88
GPR 0.42 0.95 0.85 0.88
ANN 0.47 0.94 0.80 0.91

Linear Regression 0.40 0.96 0.87 0.87
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Table B.40. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa actual, Sv actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.49 0.92 0.73 0.86
GPR 0.71 0.84 0.76 0.85
ANN 0.58 0.89 0.87 0.81

Linear Regression 0.54 0.90 0.68 0.88

Table B.41. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa actual, Sv actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.74 0.87 0.74 0.87
GPR 0.69 0.89 0.73 0.88
ANN 0.69 0.89 0.64 0.91

Linear Regression 0.73 0.88 0.74 0.87

Table B.42. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa actual, Sv actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.42 0.95 0.82 0.86
GPR 0.45 0.94 0.79 0.87
ANN 0.40 0.95 0.77 0.87

Linear Regression 0.43 0.95 0.80 0.86

Table B.43. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa actual, Sv actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.36 0.97 0.89 0.86
GPR 0.40 0.96 0.82 0.88
ANN 0.35 0.97 0.85 0.87

Linear Regression 0.43 0.95 0.83 0.88
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Table B.44. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sv actual, Sd actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.73 0.87 0.73 0.88
GPR 0.65 0.90 1.387 0.56
ANN 0.73 0.88 0.72 0.88

Linear Regression 0.71 0.88 0.72 0.88

Table B.45. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sv actual, Sd actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.30 0.97 0.99 0.79
GPR 0.35 0.97 0.83 0.85
ANN 0.35 0.96 0.71 0.89

Linear Regression 0.40 0.95 0.74 0.89

Table B.46. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sv actual, Sd actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.34 0.97 0.75 0.90
GPR 0.40 0.96 0.88 0.87
ANN 0.33 0.97 0.46 0.96

Linear Regression 0.39 0.96 0.82 0.88

Table B.47. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sv actual, Sd actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.53 0.93 0.73 0.88
GPR 0.61 0.91 0.72 0.88
ANN 0.50 0.94 0.80 0.85

Linear Regression 0.54 0.93 0.72 0.88
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Table B.48. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sv actual, Sd actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.44 0.94 0.79 0.87
GPR 0.42 0.95 0.85 0.85
ANN 0.48 0.93 0.62 0.92

Linear Regression 0.48 0.93 0.75 0.88

Table B.49. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sv actual, Sd actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.33 0.97 1.00 0.83
GPR 0.38 0.96 0.99 0.83
ANN 0.41 0.96 0.56 0.90

Linear Regression 0.40 0.96 0.81 0.89

Table B.50. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sv actual, Sd actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.35 0.97 0.56 0.93
GPR 0.43 0.96 0.67 0.90
ANN 0.39 0.97 0.63 0.91

Linear Regression 0.44 0.96 0.63 0.91

Table B.51. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sv actual, Sd actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.31 0.97 0.67 0.90
GPR 0.33 0.97 0.67 0.91
ANN 0.31 0.97 0.68 0.90

Linear Regression 0.32 0.97 0.67 0.91
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Table B.52. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sv actual, Sd actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.24 0.99 0.74 0.91
GPR 0.26 0.98 0.78 0.90
ANN 0.28 0.98 0.73 0.91

Linear Regression 0.29 0.98 0.73 0.91

Table B.53. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sv actual, Sd actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 2.09 0 2.08 0
GPR 0.74 0.87 0.63 0.91
ANN 0.53 0.93 0.65 0.90

Linear Regression 0.62 0.86 0.63 0.91

Table B.54. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sv actual, Sd actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.41 0.95 0.67 0.90
GPR 0.33 0.97 0.67 0.91
ANN 0.31 0.97 0.68 0.90

Linear Regression 0.35 0.96 0.68 0.90

Table B.55. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sv actual, Sd actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.29 0.98 0.73 0.91
GPR 0.25 0.98 0.74 0.91
ANN 0.28 0.98 0.74 0.90

Linear Regression 0.26 0.98 0.74 0.91
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Table B.56. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa actual, Sv actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.85 0.78 1.21 0.62
GPR 0.63 0.88 0.77 0.85
ANN 0.60 0.88 0.77 0.84

Linear Regression 0.71 0.84 0.87 0.81

Table B.57. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa actual, Sv actual, Sd actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.59 0.92 0.71 0.88
GPR 0.79 0.85 0.75 0.87
ANN 0.62 0.91 0.77 0.86

Linear Regression 0.76 0.87 0.73 0.88

Table B.58. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa actual, Sv actual, Sd actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.30 0.97 0.82 0.86
GPR 0.37 0.96 0.82 0.86
ANN 0.29 0.98 0.58 0.93

Linear Regression 0.50 0.93 0.81 0.86

Table B.59. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa actual, Sv actual, Sd actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.40 0.96 0.93 0.85
GPR 0.42 0.95 0.85 0.88
ANN 0.41 0.96 0.69 0.92

Linear Regression 0.45 0.95 0.71 0.91
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Table B.60. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa actual, Sv actual, Sd actual - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.85 0.78 1.21 0.62
GPR 0.73 0.83 0.75 0.85
ANN 0.78 0.80 0.66 0.89

Linear Regression 0.81 0.79 0.72 0.87

Table B.61. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa actual, Sv actual, Sd actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.47 0.95 2.74 -0.73
GPR 0.70 0.89 1.21 0.66
ANN 0.62 0.91 0.83 0.84

Linear Regression 0.97 0.78 0.73 0.88

Table B.62. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa actual, Sv actual, Sd actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.42 0.95 0.82 0.86
GPR 0.34 0.97 0.93 0.82
ANN 0.38 0.96 0.80 0.87

Linear Regression 0.45 0.94 0.78 0.87

Table B.63. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa actual, Sv actual, Sd actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.36 0.97 0.98 0.83
GPR 0.38 0.71 0.84 0.88
ANN 0.32 0.93 0.86 0.87

Linear Regression 0.43 0.95 0.84 0.88
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Table B.64. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sa actual, Sv actual, Sd actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.49 0.95 0.68 0.89
GPR 0.42 0.96 0.70 0.89
ANN 0.44 0.96 0.65 0.90

Linear Regression 0.77 0.87 0.69 0.89

Table B.65. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sa actual, Sv actual, Sd actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.30 0.98 0.67 0.91
GPR 0.37 0.96 0.71 0.89
ANN 0.31 0.97 0.67 0.90

Linear Regression 0.51 0.93 0.70 0.90

Table B.66. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sa actual, Sv actual, Sd actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.24 0.98 0.72 0.91
GPR 0.25 0.98 0.75 0.90
ANN 0.26 0.98 0.73 0.91

Linear Regression 0.27 0.98 0.75 0.90

Table B.67. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sa actual, Sv actual, Sd actual - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.60 0.92 0.69 0.89
GPR 0.77 0.86 0.59 0.92
ANN 0.59 0.92 0.65 0.90

Linear Regression 0.79 0.86 0.70 0.89
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Table B.68. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sa actual, Sv actual, Sd actual - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.27 0.98 0.67 0.91
GPR 0.31 0.97 0.70 0.90
ANN 0.31 0.97 0.68 0.90

Linear Regression 0.46 0.94 0.70 0.90

Table B.69. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sa actual, Sv actual, Sd actual - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.28 0.98 0.74 0.90
GPR 0.30 0.98 0.76 0.90
ANN 0.29 0.98 0.72 0.91

Linear Regression 0.32 0.97 0.75 0.90
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C. APPENDIX 3: RESULTS FOR DATA-DRIVEN MODELS

FOR THE PREDICTION OF PEAK RESPONSES IN

PRELIMINARY STUDY 2: MEAN SPECTRAL RESPONSE

PROPERTIES

Table C.1. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.15 0.995 0.60 0.91
GPR 0.25 0.99 0.77 0.86
ANN 0.15 0.995 0.47 0.95

Linear Regression 0.45 0.95 0.30 0.98

Table C.2. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sa - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.22 0.99 0.85 0.83
GPR 0.12 0.996 0.77 0.86
ANN 0.43 0.96 0.39 0.96

Linear Regression 0.43 0.95 0.31 0.98

Table C.3. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.27 0.98 0.31 0.98
GPR 0.39 0.97 0.25 0.99
ANN 0.20 0.99 0.30 0.98

Linear Regression 0.40 0.97 0.30 0.98
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Table C.4. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.30 0.98 0.65 0.90
GPR 0.21 0.99 0.86 0.83
ANN 0.23 0.99 0.49 0.94

Linear Regression 0.39 0.96 0.31 0.98

Table C.5. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.10 0.998 0.20 0.99
GPR 0.26 0.98 0.57 0.92
ANN 0.28 0.98 0.24 0.99

Linear Regression 0.27 0.98 0.29 0.98

Table C.6. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sa - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.27 0.98 0.30 0.98
GPR 0.18 0.99 0.79 0.85
ANN 0.30 0.98 0.35 0.97

Linear Regression 0.29 0.98 0.30 0.98

Table C.7. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 1.25 0.66 1.95 0.10
GPR 0.33 0.98 0.33 0.97
ANN 0.25 0.99 0.22 0.99

Linear Regression 0.33 0.98 0.31 0.98
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Table C.8. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.31 0.98 0.31 0.98
GPR 0.21 0.99 0.79 0.85
ANN 0.34 0.97 0.26 0.98

Linear Regression 0.28 0.98 0.30 0.98

Table C.9. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa, Sv - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.40 0.96 0.47 0.95
GPR 0.24 0.99 0.85 0.83
ANN 0.15 0.995 0.45 0.95

Linear Regression 0.32 0.98 0.32 0.98

Table C.10. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sa, Sv - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.25 0.98 0.52 0.93
GPR 0.37 0.97 0.47 0.95
ANN 0.26 0.98 0.51 0.94

Linear Regression 0.32 0.97 0.32 0.98

Table C.11. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.11 0.997 0.62 0.91
GPR 0.22 0.99 1.37 0.55
ANN 0.21 0.99 0.42 0.96

Linear Regression 0.38 0.98 0.35 0.97
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Table C.12. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sa, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.25 0.99 0.59 0.92
GPR 0.12 0.996 1.34 0.57
ANN 0.29 0.98 0.31 0.98

Linear Regression 0.36 0.97 0.35 0.97

Table C.13. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sv, Sa - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.25 0.98 0.97 0.78
GPR 0.19 0.99 0.85 0.83
ANN 0.46 0.95 0.24 0.99

Linear Regression 0.33 0.97 0.32 0.98

Table C.14. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sv, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.21 0.99 0.47 0.95
GPR 0.23 0.99 0.81 0.84
ANN 0.29 0.98 0.47 0.95

Linear Regression 0.32 0.98 0.32 0.98

Table C.15. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa, Sv - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.70 0.88 2.77 -0.82
GPR 0.26 0.98 0.57 0.92
ANN 0.23 0.99 0.56 0.93

Linear Regression 0.30 0.98 0.29 0.98
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Table C.16. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sa, Sv - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.56 0.93 1.77 0.26
GPR 0.25 0.99 0.26 0.98
ANN 0.24 0.99 0.31 0.98

Linear Regression 0.42 0.96 0.41 0.96

Table C.17. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.23 0.99 0.20 0.99
GPR 0.23 0.99 0.25 0.98
ANN 0.30 0.98 0.26 0.98

Linear Regression 0.29 0.98 0.29 0.98

Table C.18. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sa, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.21 0.99 0.35 0.97
GPR 0.23 0.99 0.75 0.86
ANN 0.32 0.97 0.28 0.98

Linear Regression 0.31 0.98 0.29 0.98

Table C.19. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sv, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.21 0.99 0.38 0.97
GPR 0.13 0.996 0.61 0.91
ANN 0.30 0.98 0.36 0.97

Linear Regression 0.19 0.99 0.33 0.98
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Table C.20. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sv, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.29 0.98 1.11 0.71
GPR 0.22 0.99 0.76 0.86
ANN 0.28 0.98 0.32 0.98

Linear Regression 0.31 0.98 0.29 0.98

Table C.21. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: Sa, Sv, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.23 0.99 0.86 0.82
GPR 0.23 0.99 1.00 0.76
ANN 0.40 0.96 0.25 0.99

Linear Regression 0.38 0.96 0.29 0.98

Table C.22. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, Sa, Sv, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.26 0.98 0.59 0.92
GPR 0.39 0.96 0.45 0.95
ANN 0.27 0.98 0.48 0.95

Linear Regression 0.39 0.96 0.29 0.98

Table C.23. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: PGA, Sa, Sv, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.31 0.98 0.29 0.98
GPR 0.24 0.99 0.50 0.94
ANN 0.32 0.98 0.25 0.99

Linear Regression 0.28 0.98 0.31 0.98
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Table C.24. Data-Driven Model Results: Varying Structural Properties:
MRDR - Inputs: E, ρ, PGA, Sa, Sv, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.28 0.98 0.34 0.97
GPR 0.24 0.98 0.57 0.92
ANN 0.35 0.97 0.34 0.97

Linear Regression 0.36 0.97 0.46 0.95

Table C.25. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa, Sv - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.45 0.93 0.87 0.81
GPR 0.60 0.87 0.81 0.83
ANN 0.60 0.87 0.85 0.78

Linear Regression 0.60 0.87 0.81 0.83

Table C.26. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa, Sv - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.37 0.97 1.04 0.75
GPR 0.36 0.97 1.51 0.48
ANN 0.46 0.95 0.55 0.93

Linear Regression 0.84 0.84 0.86 0.83

Table C.27. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa, Sv - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.40 0.95 0.77 0.87
GPR 0.51 0.92 0.83 0.86
ANN 0.40 0.95 0.60 0.92

Linear Regression 0.51 0.92 0.84 0.85
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Table C.28. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa, Sv - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.49 0.94 0.78 0.90
GPR 0.53 0.93 1.00 0.83
ANN 0.58 0.91 0.81 0.89

Linear Regression 0.64 0.89 0.82 0.88

Table C.29. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa, Sv - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.67 0.86 0.87 0.81
GPR 0.63 0.88 0.82 0.83
ANN 0.63 0.88 0.82 0.83

Linear Regression 0.77 0.82 0.84 0.82

Table C.30. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa, Sv - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.62 0.91 0.76 0.87
GPR 0.49 0.94 0.98 0.78
ANN 0.54 0.93 0.95 0.79

Linear Regression 0.75 0.87 0.75 0.87

Table C.31. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa, Sv - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.44 0.94 0.81 0.86
GPR 0.40 0.95 0.90 0.83
ANN 0.37 0.96 0.71 0.89

Linear Regression 0.51 0.92 0.81 0.86
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Table C.32. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa, Sv - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.53 0.92 0.96 0.83
GPR 0.54 0.92 0.98 0.83
ANN 0.58 0.91 0.75 0.90

Linear Regression 0.63 0.90 0.89 0.86

Table C.33. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sv, Sd - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.35 0.97 1.00 0.77
GPR 0.34 0.97 1.21 0.66
ANN 0.47 0.95 0.55 0.93

Linear Regression 0.76 0.87 0.78 0.86

Table C.34. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sv, Sd - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.37 0.96 0.87 0.84
GPR 0.42 0.95 0.83 0.86
ANN 0.30 0.97 0.51 0.94

Linear Regression 0.44 0.94 0.84 0.85

Table C.35. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sv, Sd - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.48 0.94 0.72 0.91
GPR 0.58 0.91 0.84 0.88
ANN 0.60 0.91 0.73 0.91

Linear Regression 0.63 0.90 0.82 0.88
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Table C.36. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sv, Sd - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.94 0.89 0.84 0.84
GPR 0.49 0.94 1.52 0.47
ANN 0.82 0.84 0.67 0.90

Linear Regression 0.92 0.80 0.84 0.84

Table C.37. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sv, Sd - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.42 0.95 0.84 0.85
GPR 0.46 0.94 1.19 0.70
ANN 0.39 0.96 0.72 0.89

Linear Regression 0.47 0.93 0.88 0.84

Table C.38. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sv, Sd - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.55 0.92 0.74 0.90
GPR 0.53 0.93 0.93 0.85
ANN 0.71 0.88 0.46 0.96

Linear Regression 0.87 0.81 0.87 0.87

Table C.39. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sv, Sd - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.61 0.91 0.66 0.90
GPR 0.43 0.96 0.69 0.89
ANN 0.54 0.93 0.43 0.96

Linear Regression 0.73 0.87 0.69 0.89
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Table C.40. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sv, Sd - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.32 0.97 0.69 0.90
GPR 0.33 0.97 0.69 0.90
ANN 0.30 0.97 0.68 0.90

Linear Regression 0.33 0.97 0.69 0.90

Table C.41. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sv, Sd - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.50 0.94 0.78 0.90
GPR 0.40 0.96 0.90 0.86
ANN 0.45 0.95 0.79 0.89

Linear Regression 0.46 0.95 0.79 0.89

Table C.42. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sv, Sd - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.51 0.94 0.68 0.89
GPR 0.69 0.47 0.63 0.91
ANN 0.51 0.94 0.75 0.87

Linear Regression 0.76 0.87 0.68 0.89

Table C.43. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sv, Sd - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.33 0.97 0.69 0.90
GPR 0.33 0.97 0.67 0.91
ANN 0.38 0.96 0.69 0.90

Linear Regression 0.35 0.96 0.63 0.90
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Table C.44. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sv, Sd - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.37 0.97 0.76 0.90
GPR 0.37 0.97 0.72 0.91
ANN 0.52 0.94 0.79 0.89

Linear Regression 0.50 0.94 0.94 0.89

Table C.45. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa, Sv, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.34 0.96 1.26 0.59
GPR 0.74 0.81 1.03 0.73
ANN 0.56 0.89 0.86 0.81

Linear Regression 0.75 0.81 0.87 0.81

Table C.46. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa, Sv, Sd - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.35 0.97 1.00 0.77
GPR 0.36 0.97 0.85 0.83
ANN 0.42 0.96 0.99 0.77

Linear Regression 0.77 0.86 0.81 0.85

Table C.47. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa, Sv, Sd - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.38 0.96 0.89 0.83
GPR 0.43 0.94 0.87 0.84
ANN 0.40 0.95 0.53 0.94

Linear Regression 0.67 0.87 0.81 0.86

193



Table C.48. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: Sa, Sv, Sd - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.46 0.95 1.13 0.78
GPR 0.48 0.94 0.92 0.85
ANN 0.47 0.94 0.69 0.92

Linear Regression 0.61 0.90 0.89 0.86

Table C.49. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa, Sv, Sd - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.59 0.89 0.87 0.81
GPR 0.70 0.84 0.84 0.82
ANN 0.62 0.87 0.74 0.86

Linear Regression 0.78 0.80 0.87 0.80

Table C.50. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa, Sv, Sd - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.69 0.89 0.79 0.86
GPR 0.44 0.95 1.02 0.76
ANN 0.56 0.93 0.90 0.81

Linear Regression 0.79 0.86 0.81 0.85

Table C.51. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa, Sv, Sd - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.43 0.95 1.06 0.80
GPR 0.38 0.96 0.95 0.84
ANN 0.59 0.90 0.95 0.84

Linear Regression 0.66 0.87 0.98 0.83
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Table C.52. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, Sa, Sv, Sd - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.58 0.91 0.75 0.90
GPR 0.61 0.90 0.96 0.84
ANN 0.59 0.91 0.71 0.91

Linear Regression 0.65 0.89 0.93 0.85

Table C.53. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sa, Sv, Sd - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.51 0.94 0.70 0.89
GPR 0.46 0.95 0.92 0.81
ANN 0.56 0.93 0.55 0.93

Linear Regression 0.74 0.87 0.51 0.94

Table C.54. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sa, Sv, Sd - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.32 0.97 0.67 0.91
GPR 0.37 0.96 0.71 0.89
ANN 0.31 0.97 0.68 0.90

Linear Regression 0.53 0.92 0.73 0.89

Table C.55. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: PGA, Sa, Sv, Sd - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.40 0.96 0.77 0.90
GPR 0.49 0.94 0.84 0.88
ANN 0.41 0.96 0.74 0.90

Linear Regression 0.50 0.93 0.79 0.89
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Table C.56. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sa, Sv, Sd - 50 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.78 0.89 0.79 0.86
GPR 0.44 0.95 1.02 0.76
ANN 0.56 0.93 0.90 0.81

Linear Regression 0.79 0.86 0.81 0.85

Table C.57. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sa, Sv, Sd - 75 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.34 0.97 0.68 0.90
GPR 0.33 0.97 0.72 0.89
ANN 0.32 0.97 0.68 0.90

Linear Regression 0.42 0.95 0.75 0.88

Table C.58. Data-Driven Model Results: Varying Structural Properties:
MSDR - Inputs: E, ρ, PGA, Sa, Sv, Sd - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.40 0.96 0.76 0.90
GPR 0.38 0.96 0.86 0.87
ANN 0.21 0.96 0.76 0.90

Linear Regression 0.50 0.93 0.79 0.89
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D. APPENDIX 4: RESULTS FOR DATA-DRIVEN MODELS

FOR THE PREDICTION OF PEAK RESPONSES: FULL

STUDY

Table D.1. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: Sa mean - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.12 0.997 0.32 0.98
GPR 0.19 0.99 0.37 0.97
ANN 0.10 0.998 0.32 0.98

Linear Regression 0.13 0.996 0.30 0.98

Table D.2. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: Sd mean - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.11 0.998 0.27 0.98
GPR 0.12 0.997 0.28 0.98
ANN 0.11 0.998 0.25 0.99

Linear Regression 0.11 0.998 0.29 0.98

Table D.3. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: PGA, Sd mean - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.16 0.99 0.24 0.99
GPR 0.16 0.99 0.25 0.99
ANN 0.20 0.99 0.24 0.99

Linear Regression 0.14 0.996 0.25 0.99
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Table D.4. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: Sa mean, Sd mean - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.10 0.998 0.28 0.98
GPR 0.11 0.997 0.25 0.99
ANN 0.08 0.998 0.26 0.98

Linear Regression 0.10 0.998 0.25 0.99

Table D.5. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: Sv mean, Sd mean - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.13 0.996 0.35 0.97
GPR 0.12 0.996 0.26 0.98
ANN 0.11 0.997 0.24 0.99

Linear Regression 0.13 0.996 0.24 0.99

Table D.6. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: Sa mean, Sv mean, Sd mean - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.22 0.99 0.31 0.98
GPR 0.25 0.99 0.27 0.98
ANN 0.18 0.99 0.31 0.98

Linear Regression 0.25 0.98 0.27 0.98

Table D.7. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: PGA, Sa mean, Sv mean, Sd mean - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.09 0.998 0.25 0.99
GPR 0.07 0.999 0.31 0.98
ANN 0.08 0.998 0.26 0.98

Linear Regression 0.09 0.998 0.25 0.99
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Table D.8. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: Sd act - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.10 0.998 0.43 0.96
GPR 0.21 0.99 0.41 0.96
ANN 0.12 0.997 0.41 0.96

Linear Regression 0.11 0.997 0.41 0.96

Table D.9. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: PGA, Sd act - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.10 0.997 0.38 0.97
GPR 0.09 0.998 0.38 0.97
ANN 0.12 0.996 0.38 0.97

Linear Regression 0.10 0.998 0.36 0.97

Table D.10. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: Sa act, Sd act - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.30 0.98 0.39 0.96
GPR 0.11 0.997 0.46 0.95
ANN 0.11 0.997 0.49 0.95

Linear Regression 0.14 0.996 0.46 0.95

Table D.11. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: Sv act, Sd act - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.17 0.99 0.38 0.97
GPR 0.10 0.998 0.38 0.97
ANN 0.21 0.99 0.32 0.98

Linear Regression 0.17 0.99 0.40 0.96
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Table D.12. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: Sa act, Sv act, Sd act - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.18 0.99 0.56 0.93
GPR 0.18 0.99 0.43 0.96
ANN 0.16 0.99 0.45 0.95

Linear Regression 0.17 0.99 0.34 0.97

Table D.13. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MRDR - Inputs: PGA, Sa act, Sv act, Sd act - 25 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.19 0.99 0.46 0.95
GPR 0.17 0.99 0.49 0.94
ANN 0.18 0.99 0.45 0.95

Linear Regression 0.16 0.99 0.46 0.95

Table D.14. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: Sv mean - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.73 0.87 0.89 0.86
GPR 0.83 0.82 0.89 0.86
ANN 0.75 0.86 0.78 0.89

Linear Regression 0.84 0.82 0.96 0.84

Table D.15. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: Sa mean, Sv mean - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.68 0.88 0.90 0.85
GPR 0.75 0.86 1.14 0.77
ANN 0.75 0.86 0.81 0.88

Linear Regression 0.88 0.80 0.84 0.87
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Table D.16. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: Sv mean, Sd mean - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.71 0.87 0.83 0.88
GPR 0.78 0.84 0.99 0.83
ANN 0.71 0.87 0.76 0.90

Linear Regression 0.81 0.83 0.84 0.87

Table D.17. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: PGA, Sv mean, Sd mean - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.55 0.92 0.69 0.92
GPR 0.53 0.93 0.70 0.91
ANN 0.53 0.93 0.70 0.91

Linear Regression 0.53 0.93 0.70 0.91

Table D.18. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: Sa mean, Sv mean, Sd mean - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.68 0.88 1.31 0.69
GPR 0.76 0.85 1.01 0.82
ANN 0.78 0.85 0.58 0.94

Linear Regression 1.00 0.74 0.94 0.84

Table D.19. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: PGA, Sa mean, Sv mean, Sd mean - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.61 0.91 1.40 0.65
GPR 0.63 0.90 0.80 0.89
ANN 0.65 0.89 0.64 0.93

Linear Regression 0.61 0.91 0.75 0.90
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Table D.20. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: Sv act - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.62 0.90 0.88 0.86
GPR 0.60 0.91 0.82 0.88
ANN 0.60 0.91 0.76 0.90

Linear Regression 0.57 0.91 0.82 0.88

Table D.21. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: Sa act, Sv act - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.58 0.92 0.87 0.86
GPR 0.75 0.86 0.90 0.86
ANN 0.64 0.90 0.88 0.86

Linear Regression 0.71 0.87 0.84 0.87

Table D.22. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: Sv act, Sd act - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.58 0.91 0.95 0.84
GPR 0.57 0.92 0.82 0.88
ANN 0.60 0.91 0.85 0.87

Linear Regression 0.54 0.93 0.84 0.87

Table D.23. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: PGA, Sv act, Sd act - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.34 0.97 1.20 0.74
GPR 0.40 0.96 1.41 0.65
ANN 0.44 0.95 1.35 0.67

Linear Regression 0.57 0.92 1.15 0.77
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Table D.24. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: Sa act, Sv act, Sd act - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.58 0.92 0.90 0.86
GPR 0.58 0.91 0.95 0.84
ANN 0.58 0.91 0.86 0.87

Linear Regression 0.66 0.89 0.77 0.89

Table D.25. Data-Driven Model Results: High-Fidelity Data: Varying Struc-
tural Properties: MSDR - Inputs: PGA, Sa act, Sv act, Sd act - 100 points

Model Val NRMSE Val R2 Test NRMSE Test R2

SVM 0.44 0.95 1.40 0.65
GPR 0.45 0.95 1.57 0.56
ANN 0.45 0.95 1.42 0.64

Linear Regression 0.60 0.91 1.43 0.63
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